
www.manaraa.com

Retrospective Theses and Dissertations Iowa State University Capstones, Theses and
Dissertations

1994

An MS Windows prototype for automatic general
purpose image-based flaw detection
Jorn Lyseggen
Iowa State University

Follow this and additional works at: https://lib.dr.iastate.edu/rtd

Part of the Electrical and Computer Engineering Commons

This Thesis is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital
Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University Digital
Repository. For more information, please contact digirep@iastate.edu.

Recommended Citation
Lyseggen, Jorn, "An MS Windows prototype for automatic general purpose image-based flaw detection" (1994). Retrospective Theses
and Dissertations. 233.
https://lib.dr.iastate.edu/rtd/233

http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Frtd%2F233&utm_medium=PDF&utm_campaign=PDFCoverPages
http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Frtd%2F233&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/rtd?utm_source=lib.dr.iastate.edu%2Frtd%2F233&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/theses?utm_source=lib.dr.iastate.edu%2Frtd%2F233&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/theses?utm_source=lib.dr.iastate.edu%2Frtd%2F233&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/rtd?utm_source=lib.dr.iastate.edu%2Frtd%2F233&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/266?utm_source=lib.dr.iastate.edu%2Frtd%2F233&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/rtd/233?utm_source=lib.dr.iastate.edu%2Frtd%2F233&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digirep@iastate.edu

www.manaraa.com

Approved:

An MS Windows prototype system for
automatic general purpose image-based flaw detection

by

Jorn Lyseggen

A Thesis Submitted to the

Graduate Faculty in Partial Fulfillment of the

Requirements for the Degree of

MASTER OF SCIENCE

Department: Electrical Engineering and Computer Engineering
Major: Electrical Engineering

For the Majlk Department

For the Graduate College

Iowa State University
Ames, Iowa

1994

Signature redacted for privacy

Signature redacted for privacy

Signature redacted for privacy

www.manaraa.com

ii

To Mi-Young Song,

for always being there

www.manaraa.com

iii

TABLE OF CONTENTS

1. FLAW DETECTION .. 1

1.1. lNTRODUCfiON •.............••.......................................•...............•...•..••••........... 1

1.2. REVIEW OF EARLIER WORK BY JOHN P. BASART'S GROUP•••.............................. 2

2. PATTERN RECOGNITION•.........•.........................•...............••••..••••................•..................•............ 4

2.1. lNTRODUCfiON ..••..........•••............ 4

2.2. PEA TURES AND FEATURE SPACE··· 5

2.3. FEATURE OPTIMIZATION •...•.. 7

2.4. CLASSIFIERS ...•.••.••.•...•••.......... 8

2.4.1. Overview ... B

2.4.2. Unsupervised Classification, Clustering .. 8

2.4.3. Unsupervised Classification, Statistical Model-based ... 9

2.4.4. Supervised Classification, Deterministic Model1ree ... 10

2.5. ARTIFICIALNEURALNE1WORKS•.. l0

2.5. 1. Definition of a Neuron .. 11

2.5.2. The Hopfield Net•vork ... 12

2.5.3. Probabilistic Neural Networks ... 13

2.5.4. The Backpropagation Nenvork ... 15

2.6. FUZZY LOGIC .. 16

2.6.1. Introduction .. 16

2.6.2. Fuzziness vs. Probability .. 17

2.6.3. Membership Functions ... 18

2.6.4. Fuzzy Set Operations .. /9

2.6.5. Translating IF-THEN Rules to Fuzzy Domain (biference) ... 19

2.6.6. Conzbining Fuzzy Rules .. 2/

2.6. 7. Defuzzification .. 22

3. SHERLOCK ••...........................•...............................•...•..•••••••.....••••••............ 25

3.1. MOTIVATION ... 25

3.2. DESIGN OBJECTIVES ... 26

3.3. SHORT ABOUT IMPORTANT DESIGN DECISIONS .. 27

3.4. SYSTEM OVERVIEW .. 28

www.manaraa.com

iv

3.5. DE1'ECfiON SCI:IEME •.. 29

3.6. PREPROCESSING•...•............................. 29

3.7. FEATUREEXTRACfiON •.. 30

3.8. IMPLEMENTED FEATURE SETS ·············••···················••·······•··••·· 31

3.8.1. 1ntroduction .. 31

3.8.2. First Order Histogram Features .. 33

3.8.3. Second Order Histogram Features ... 37

3.8.4. Focused Second Order Difference Features .. 42

3.8.5. Cosine Transfornz Features .. 44

3.8.6. Hadamard and Walsh Transfornz Features .. 47

3.9. IMPLEMENTED CLASSIFIERS .. 48

3.9.1. lntroduction .. 48

3.9.2. Feature Nornzalization' .. 48

3.9.3. K-mean ... 50

3.9.4. Fuzzy-C ... 51

3.9.5. Nearest Neighbor ... 54

3.9.6. The Single lAyer Perceptro/1 .. .-... 55

3. 9. 7. The Fuzzy-Perceptron .. 57

3.9.8. Sorting Fuzzy ... : .. 59

4. INSPECTION STRATEGIES ... 62

4.1. CHOOSING FEATURE SUPPORT AND GRID SIZE .. 62

4.2. CHOOSING FEATURES .. 63

4.2.1. A Sinzulated Texture Image .. 64

4.2.2. T~vo Natural Brodatz Textures ... 68

4.2.3. T•vo Geonzetry Brodatz Textures .. 72

4.2.4. Void Fla•v in Busy ln1age ... 76

4.2.5. Infra Red Galaxy ln1age .. 80

4.2.6. Fossil Skeletal Details in X-ray Image .. : 84

4.3. CHOOSING TRAINING DATA ... ··································· 88

4.4. CHOOSING CLASSIFIER·· 88

www.manaraa.com

v

5. CLASSIFICATION RESULTS .. 90

5 .1. INTRODUCTION ... 90
5.2. SIMULA'TED TEXTURE IMAGE .. 90
5.3. SHRINKAGE CRACKS ... 91
5.4. CLASSIFICAtiON OF FLAWED RUGS ... 91
5.5. IDENTIFICATION OF VOID FLAWS IN BUSY IMAGES ... 92
5.6. DISCUSSION ... 112

6. USER MANUAL FOR SHERLOCK V1.1 .. : 113

6.1. PROCESSING PRINCIPLES .. 113
6.2. MENUS ... 114
6.3. THE TOOLBAR .. 117
6.4. DIALOG BOXES .. 118
6.5. EXAMPLE OF BASIC PROCESSING .. 120
6.6. SYS'TEM REQUIREMENTS .. 124
6. 7. 1'ECHNICAL SUPPORT ... 124

7. CONCLUSION AND FUTURE WORK ... 125

BIBLIOGRAPHY .. ~ 127

www.manaraa.com

1. FLAW DETECTION

1.1. Introduction

Flaw detection plays a crucial role in many industries to make sure that the

products meet the specified quality requirements. When making for example a car it is

important that all the parts satisfy certain quality standards to make sure the consumer

buys a car that is safe to operate. A crack or another weakness in a crucial part can be

catastrophic. To make sure their cars are as safe as possible, car manufacturers are

conducting thorough testing of crucial parts. Similar tests are done in a wide variety of

industries, and these quality controls are often referred to as flaw detection. Any cracks,

voids, or other weaknesses that can cause danger are called flaws.

Flaw detection is often done, or preferred done, in real time-- in an assembly line

fashion. An important constraint, in addition to reliability, is therefore speed.

The techniques used in these tests varies. Common techn~ques are ultrasonic

waves (1-D or 2-D), eddy current imaging, x-ray imaging, thermal imaging, and

fluorescent penetrent imaging.

In this thesis I will discuss automatic general purpose image-based flaw

detection. "Automatic" means that the flaw detection is performed without human

supervision, and "general purpose" means that the inspection is not tailored to a specific

task (i.e. one particular flaw in one particular type of object), but is ideally applicable to

any detection problem.

The thesis is organized in five chapters. Chapter 1 is discussing flaw detection in

general and earlier work done in this area. Chapter 2 is an introductory tutorial to pattern

recognition with emphasis on neural networks and fuzzy logic. Chapter 3 discusses

implemented techniques in the developed prototype system Sherlock. Chapter 4 contains

a user manual of Sherlock. Chapter 5 explains inspection strategies. Chapter 6 is

reporting on classification results, and chapter 7 has a conclusion and suggestions for

future work.

www.manaraa.com

2

1.2. Review of Earlier Work by John P. Basart's Group

John P. Basart's group, in which I have been doing my work, has been working

with image-based flawdetection for a number of years. The development of this group's

work describes' pretty much how the general trend in this area has developed.

This group's earliest work was focused on image enhancement techniques. The

objective was to enhance the flaws by image processes and thereby ease detection by a

human inspector. Some of the techniques used for this purpose were edge detection

[Wong,1987], trend removal [Doering, 1987], maximum entropy deconvolution

[Zheng, 1987], correlated noise analyses [Zheng, 1987], Adaptive Kalman filtering

[Zheng, 1987], and template

matching [Gabot,1988].

Work was then done in

the area of automatic flaw

detection (see Fig 1.1). At first,

automatic task specific routines

was focused. The most important

contribution here was a system

developed by J. Xu for Martin

Marietta which detected void-like

flaws in welds in fuel tanks for

the NASA Space Shuttle [Xu J. et

al., 1989]. This system was based

~~~~bBsecf' 
FlilWCi~tection 

Fig 1.1 

Categorization of image based flaw detection 

on a decision tree structure. Their approach was first to identify the weld region, and then 

to extract information like gradients, mean, and variance. This information was then fed 

into the tree structure that made the decision to whether there was a flaw, its location, and 

its size. 

Xu's system was reasonably successful. However, of the initial training images, 

there was a large overrepresentation of images with flaws, and when the system was 

tested with images without flaws, a problem of false alarms was encountered. This 

problem could probably have been solved by modifications of Xu's tree structure, but was 

never done because of lack of funding. 

Other significant work in automatic flaw detection was done by K. W. Ulmer 

[ 1992], and E. M. Siwek [ 1994]. Their work were in the area of general purpose flaw 



www.manaraa.com

3 

detection. Ulmer and Siwek both tried to solve problems related to the geometry of the 

object being inspected. For example, when x-raying an object with a complicated 

geometric structure, the resulting image will often have large intensity variations due to 

the thickness variations of the object. These intensity variations can often complicate the 

inspection considerably. If intensity fluctuations due to the geometry can be successfully 

removed, flaws would ideally stand out from a uniform background, and should be easy 

to detect. Ulmer worked on a method that modeled the surface by growing piece-wise­

continues third order polynomial surfaces. Siwek's approach was to subtract a CAD 

model of the object being inspected. For this purpose she used XRSIM [Gray and Inane, 

1990] a simulation program that generates simulated X-ray images from CAD models. 

Both techniques were reasonable successful. The techniques removed complicated 

geometries, revealing flaws that earlier was difficult to identify. However, both methods 

introduced artifacts that could be confused with flaws. The artifacts from Ulmer's 

technique were due to problems in boundary regions between two or more surfaces. 

These artifacts were typically present at sharp edges. Artifacts from Siwek's technique 

stemmed mainly from difficulties with gray scale and spatial registration. Gray scale 

registration is the process of matching grayscale distribution between the simulated and 

actual image, and spatial registration is scaling and aligning the two images. In spite of 

the artifacts, the work of Ulmer and Siwek showed encouraging results in the area of 

automatic general purpose. flaw detection. 

My work is a continuation of the development of John P. Basart's group in 

automatic general purpose flaw detection. Instead of trying to remove the geometry, I rely 

on a pattern recognition scheme that extracts local numerical quantities, features, that will 

be used to discriminate (classify) between flaws and non-flaws. To accommodate 

generality, a number of feature extraction methods and classifiers are provided. Before 

the system is ready for classification, an operator aided initialization, training, is 

necessary. The operator would choose method of preprocessing, feature extraction, and 

classification based upon the training data i.e. known examples (prototypes) of flaws and 

non-flaws. After the classifier has processed the training data, the system is ready for 

inspection of unknown data. 



www.manaraa.com

4 

2. PATTERN RECOGNITION 

2.1. Introduction 

Pattern recognition can be considered the umbrella term for all artificial 

intelligence (AI) techniques. What all AI techniques essentially attempts _ta. do is to 

automate a decision process which means, on the lowest level, to make a computer 

discriminate between two or more phenomena, patterns. A typical example of pattern 

recognition would be optical character recognition (OCR) where a page of text is 

automatically read into a text file by recognizing and discriminating between the different 

characters and punctuation. An example of abstract pattern classes would be normal or 

abnormal heart conditions which can be found by analyzing electrocardiograms [Tou and 

Gonzalez, 1974]. 

In general, pattern recognition can be broken down into two tasks: feature 

extraction and classification. Feature extraction is the task of gathering information on 

which to base the classification on, and classification is the process where the different 

pattern classes are discriminated between. 

The reliability of the decision made of a pattern recognition system is of course 

highly dependent of how well the information extracted separates the different pattern 

classes, and how well the classifier performs the actual discrimination. There is a strong 

symbiotic relationship between the feature extractor and classifier. The feature extractor 

needs to produce discriminatory information the classifier can use, and the classifier 

needs to utilize the discriminatory information provided. Kandel [ 1982] made an 

interesting point; the feature extractor and the classifier are two processes that ideally 

tries to eliminate each other. A perfect feature extractor would extract information that 

completely discriminates between the pattern classes, and an ideal classifier would be 

able to distinguish between two or more classes regardless of the information provided. In 

real life, though, there are no such thing as a perfect feature extractor or a perfect 

classifier. In fact, it is often very difficult to find an optimal method of feature extraction 

or an optimal classifier. Choosing what information to extract and which criteria to use 

for classification are therefor often done heuristically. 



www.manaraa.com

5 

The reason for this should be clearer by reading the rest of this chapter in which I 

will describe the principles of pattern recognition in greater detail and also review some 

of the most important families of classifiers. 

2.2. Features and Feature Space 

Features are quantified information produced by the feature extractor. Each 

feature is a numerical quantity, a measure of a particular characteristic. The actual feature 

value can be either measurements or calculated quantities. In a climate analyses, a useful 

feature could be the measured temperature. An alternative temperature feature could be 

the maximum deviation from the average over seven daily measurements. A binary 

temperature feature could be 1 for temperatures above the freezing point and -1 for 

temperatures below. 

An important characteristic of features is that often the value of the feature itself 

is of less importance. What is sought is its capability of discriminating between the 

pattern classes. 

One of the fundamental 

problems in pattern recognition 

Is associated with feature 

extraction and is often referred 

to as the "problem of sensing" 

[Tou and Gonzalez, 1974]. 

Perfect representation of a 

pattern, which is measured in 

discriminating ability, is often 

difficult. Feature extraction is 

in many ways analogous to 

sampling a signal without 

knowing the signal's original 

frequency. Our sampled values 

Weight 

0 

Fig 2.1 

0 
0 

Overweight 

0 

0 

Under weight 

0 

0 0 

decision 
boundaries 

Height 

Simple example of a two dimensional feature 
space and two linear decision boundaries 

represent the signal, but it is difficult to know how well. 

Features are organized in feature vectors. A vector can be plotted in a vector 

space, and the vector space associated with feature vectors is called feature space. 



www.manaraa.com

6 

Considering feature vectors as points in feature space, the classification process can be 

looked at as labeling regions in feature space as belonging to one or another class. Based 

on this view, the purpose of the feature extraction can be rephrased to: mapping patterns 

to feature space in such a manner that patterns of same class are grouped together while 

patterns of different classes are separated. The classification process then becomes one of 

determining decision boundaries 

between the different class 

regions. 

A simple example should 

clarify the above principles. 

Imagine a nutrition study based 

on the two features height and 

weight. This gives a feature vector 

of dimension two. These feature 

vectors can be plotted in an X-Y 

coordinate system, a two 

dimensional feature space. The 

objective of the study could for 

example be to classify individuals 

as (a) under weight, (b) ideal 

0 

0 

• 
• • 

Fig 2.2 
Examples of three pattern classes and nonlinear 
decision boundaries. The class denoted by black 
points are clustered in two clusters. 

weight, and (c) over weight. Such a feature space with appropriate decision boundaries 

between the different classes could look something like the illustration in Fig 2.1. In this 

illustration patterns are represented by circle points in feature space and they are 

separated into three classes by two parallel linear decision boundaries. 

In general, decision boundaries are not parallel straight lines, and patterns from 

one class is not clustered in one cluster. Examples of more generalized feature space, 

patterns, and decision boundaries are shown in Fig 2.2. In this feature space the patterns 

are separated by nonlinear decision boundaries. The different pattern classes are labeled 

with different colors. The pattern class denoted by black points is clustered in two 

different clusters. 



www.manaraa.com

In the above 

illustrations of feature space 

we assumed that the features 

were orthogonal. This is a 

common assumption made 

In many classifiers. 

Orthogonality has several 

7 

a) b) 

Fig 2.3 
a) orthogonal vectors b) unorthogonal vectors 

desirable properties. Firstly, a feature vector with orthogonal features does not contain 

any redundant information (Fig 2.3) Secondly, distances between patterns in feature space 

can be calculated using the popular Euclidean distance measures. However, sometimes it 

is difficult or time consuming to calculate orthogonal features. Then unorthogonal 

features have to do the job. In that case feature space will not be of the Cartesian style we 

are so familiar with, but rather a skewed version depending on the correlation between the 

features. (see Fig 2.3b ). In some cases this can prove useful if the patterns are scattered in 

a more appropriate way. 

2.3. Feature Optimization 

Feature Optimization is the process of remapping the feature vectors to another 

domain (feature space) to make it easier for the classifier to do its job. One way of doing 

this would be to use only the features that proved to be most valuable for classification. 

Features that are not important for the classification process can seriously confuse the 

classification stage and should therefore be removed. Another way would be to do some 

kind of transformation that would better group patterns of the same class and separate 

patterns of different classes. 

A lot of theoretical work has been done in this important area, but in my thesis I 

have concentrated very little of my effort on feature optimization. Instead, I have focused 

on choosing the right feature set. No matter how good a feature optimization algorithm is, 

it is not a miracle cure. What is most important is that the necessary information is 

available in the extracted features; garbage in will give garbage out. However, for fine 

tuning and further development of my work, feature optimization would be an interesting 

area to look into. 



www.manaraa.com

8 

2.4. Classifiers 

2.4.1. Overview 

In Section 2.2, I defined the classification process as determining decision 

boundaries in feature space between different pattern classes. This is what classifiers are 

practically doing. However, many people like to look at the classification process as a 

function estimation [Kosko,1992; Bezdek,1982; Kandel,1982], and clearly this can be 

justified. What the classifiers are doing is mapping data from an input domain to an 

output domain. Classifier design can then be viewed as finding the transfer function 

between the input domain and the desired output domain. 

Classifiers can be divided into two main categories: supervised and unsupervised. 

Supervised classifiers are classifiers that before classification have to go through what is 

often referred to as a training phase or learning. There is a lot of hype about "intelligent 

machines" that can "learn from experience". The leanzing,. however, is simply an 

iterative process, an algorithm, that may or may not converge and that often is attempting 

to minimize an error criterion. Unsupervised classifiers are classifiers that do not need to 

go through this training process. 

Another useful categorization of classifiers is distinguishing between model-based 

and model-free classifiers. Model-based classifiers often assume some sort of a priori 

statistical properties and are closely related to statistical estimation and optimization. 

Model-free classifiers are deterministic algorithms that often attempt to minimize a 

predefined object function. 

The rest of this chapter will give a brief overview of the most important types of 

classifiers. 

2.4.2. Unsupervised Classification, Clustering 

Clustering algorithms are an important type of unsupervised classifiers. The object 

of an unconstrained clustering algorithm is to group pattern classes as far apart in the 

feature domain as possible. For this reason, many clustering algorithms use some sort of 

multidimensional distance measure. 

Since clustering algorithms are not supervised i.e. given any additional 

information except the clustering criteria, they are usually not very fit to distinguish 



www.manaraa.com

9 

between classes that are spatially very close or partially overlap in feature space. Another 

disadvantage of clustering algorithms is that they can be computationally demanding, 

especially if the dimension of the feature vector is large and there are many patterns to 

cluster. This is the case because clustering algorithms have to iterate through all the 

patterns many times to group them into clusters. 

The two most well-known clustering algorithms are the K-mean and the Isodata 

clustering algorithm. Given the number of desired clusters, K-mean attempts to minimize 

the squared distance from the patterns in a cluster domain to the cluster center. This 

algorithm is discussed in greater detail later. The Isodata clustering determines itself the 

number of clusters to group the patterns into. The algorithm consists of a fairly 

comprehensive set of heuristic procedures for splitting, merging, and moving cluster 

centers. 

For more information about clustering algorithms, interested readers are 

encouraged to read [Tou, 1974]. 

2.4.3. Unsupervised Classification, Statistical Model-based 

Statistical classifiers are closely related to statistical estimation and optimization. 

A statistical Model-based classifier assumes certain statistical properties and then either 

minimizes an error or maximizes a likelihood function. 

The most well-known statistical classifier is the Bayes' classifier. It is statistically 

an optimum classifier. The information it requires are the a priori probabilities and 

densities of each class as well as the cost of decision [Tou, 1974]. For two classes the 

general form of the Bayes' classifier is: 

X is assigned to class w1 IFF 

p(XIwl) > p(w2) (~~-~2) (2.1) 
p(XIw2) p(w1) (L12 - ~ 1 ) 

Lu is the cost of assigning X to class i 

when it actually belongs to class j 



www.manaraa.com

10 

For classification problems where the a priori probabilities and losses are known 

or can be reliably estimated, the Bayes' classifier is a very useful classifier and is widely 

used. 

2.4.4. Supervised Classification, Deterministic Model-free 

The largest group of supervised classifiers is model-free. These classifiers 

estimate the mapping function from the input domain to the desired output domain by 

generalizing a set of training data (training). Training data are prototypes of the different 

pattern classes, i.e. known pairs of input and output data. Based on these prototypes, 

decision boundaries in feature space between the classes are made. 

Since the decision boundaries are purely based on the training data, it is extremely 

important that the training data cover as much of the feature space as possibly or 

alternatively, that they represent the data to be classified well. If not, the classification 

result will be unreliable. To find out whether the training data is representative or not is 

often very difficult. This is especially true for the cases with feature vectors of high 

dimensions. The problem of finding good training data is one of the largest disadvantages 

of supervised classifiers. 

The simplest and most intuitive supervised classifier is the Nearest Neighbor. 

Unknown data are simply assigned to the same class as the closest prototype in feature 

space. The most commonly used measure for closeness in this classifier is the Euclidean 

norm. 

Other important classes of model-free supervised classifiers are supervised neural 

networks and supervised classifiers based on fuzzy logic. These classifiers will be 

described in more detail in the two subsequent chapters. 

2.5. Artificial Neural Networks 

Artificial neural networks are a type of model-free classifiers, supervised and 

unsupervised, that have been given a lot of attention the last few years. These algorithms 

are massively parallel in architecture and are inspired by biological models of human 

neurons. 



www.manaraa.com

II 

2.5.1. Definition of a Neuron 

A neuron is often called a processing unit (PU) and 

is the fundamental building block in an artificial neural 

network, hereafter simplified to neural network. The basic 

characteri stics of a neuron are the number of input signals, 

its individual weighting of these, its number of output 

signals, and its activation function (see Fig. 2.4). 

The input signals are output signals from other 

neurons (except for neurons in the input layer), and the 

output signals, all identical, serve as input signals for other 

neurons. 

Activation functions can take a wide variety of 

fo rms, bu t they usually all have in common that they are 

nonlinear, like their biological counterparts. The most 

common activation functions are binary hardlimiter, bil inear 

hardl imiter, and sigmoid functions (Fig 2.5). 

Output Signals 

Input Signals 

Fig 2.4 
An illustration of a 
neuron, a neural 
network cell. 

The general transfer function between input and output signals is: 

output = f ( 0 x;Gw;) (2.2) 

where f = activation function: 0 and 8 are operators, i=O .. N-1, N = number of input 

signals, X; is input signal i and w; is the weight associated with X;· 

The most common ope!·ators used are summation and multiplication i.e. summing 

over products between input signals and their respecti ve weights. This gives the transfer 

fu nction: 

output= J(I, x;w;) (2.3) 

This type of processing elements are connected in different types of networks 

cal led neural networks. In the rest of this chapter the most common networks types are 

briefly discussed. 



www.manaraa.com

12 

2.5.2. The Hopfield Network 

The Hopfield network, invented by John 

Hopfield in 1982 [Hopfield, 1982], is a single layer 

network using a bilinear hardlimiter activation 

function (Fig 2.6). This network has versions for both 

binary and continuous valued inputs and outputs, but 

the binary version is the most well-known. 

The Hopfield network can be configured to 

solve different types of problems, but here I will 

discuss the binary Hopfield network as a simple 

associate memory system. This network can be useful 

for binary patterns such as binary images or ASCII 

character code. There are other neural network models 

that do a better job than the Hopfield network for this 

purpose, but the Hopfield network is the most well­

known and is also the easiest to understand. 

Associate memories are memories which are 

addressable by content. When excited with an input 

pattern, an associate memory system will search in its 

stored pattern bank and output the pattern that closest 

resembles the input pattern. This way distorted or 

incomplete data can be completely recovered. 

Common applications of associate memories are noise 

cleaning and spell checking. 

The Hopfield network stores its pattern bank 

in its weights, w~r These prototype patterns are located 

in states of energy minima (not necessary global) 

where energy is defined as: 

Binary Hardlimiter 

1 

Bilinear Hardlimiter 

1..,_ __ _ 

___ .,. -1 

Sigmoidal Function 

Fig 2.5: 
Different types of common 
activation functions 



www.manaraa.com

13 

where u; is state of node i. After initializing the nodes with the input pattern, the Hopfield 

network randomly updates the node states (neurons) one by one with the following 

relation: 

where ui(k+l) is state of node j at iteration k+l, i is node index, and f is the bilinear 

hardlimiter. This updating procedure has the property that the new energy state is smaller 

than or equal to the old. The network therefore eventually converges to a local energy 

minima. 

The disadvantages of the Hopfield 

network are inefficient pattern storage, 

and unreliable prototype recall for a large 

pattern bank. The recall problem is due to 

generation of energy minima that are not 

associated with any of the prototype 

patterns. The Hopfield network is today 

not the associate memory of choice, but 

when it was first introduced it sparked 

new interest in the development of 

artificial neural networks. 

2.5.3. Probabilistic Neural Networks 

Associate memory 

Fig 2.6 

Nodes 

Weights/ 
memory 

Illustration of a Hopfield network. Gray 
dots symbolizes weights and connection 
between nodes. 

Probabilistic neural networks are implementations of old statistical algorithms 

[Meisel, 1972] in a neural network architecture. This was first done by Donal Specht in 

I 990 [Specht, 1990]. 

The idea behind this network is to model an unknown pdf (probability density 

function) by using a basis-function [Parzen, 1962], for example, a multi variable gaussian. 

A I -D example is shown in Fig 2.7. The principle is similar to making a frequency table 

for discrete data. In the continuous case, the bin-increment is replaced by a continuous 

function as for example a gaussian as in Fig 2.7. 



www.manaraa.com

14 

It is shown that the estimated pdf 

converges asymptotically to the true density as 

the sample size increases [Masters, 1993], thus 

we can construct a classifier that is 

asymptotically Bayes' optimal. 

Introducing the prior probability p and 

cost of misclassification c while denoting the 

modeled pdf d, the classification can be 

formulated as follows: Assign X to class i IFF 

where 

a) 

.... 

b) (\ 

!""'/\ I \ 
J v \ .. 

Fig 2.7 
Modeling of 1-D pdf using an 
exponential basis function. a) 
shows sample data and b) shows 
modeled pdf 

, B[] = basisfunction (2.7) 

The prior probabilities are often set equal to each other and the same is true for the costs 

of misclassification if no additional information is known. The classification will in that 

case reduce to simply comparing the values of the two modeled density functions, d; and 

dr 
The density functions are usually averaged over the number of samples n to 

normalize the pdfs describing different classes. The pdfs could alternatively be 

normalized by using the requirement that their integral should be equal to 1, but this is 

usually not done because of the computational expense. Besides, the actual value of the 

pdfs or the pdfs integral is of no importance since classification is done by comparing 

relative pdf magnitudes according to eq. 2.6. 

The disadvantages of probabilistic neural networks are slow classification and that 

there are no good general way of finding the spread of the basis function cr in eq. 2.7. The 

classification performance is highly dependent on this parameter, so the latter is a serious 

difficulty associated with probabilistic neural networks. However, once a good basis 

function and a useful spread is found, the probabilistic neural networks perform well. 



www.manaraa.com

15 

2.5.4. The Backpropagation Network 

The most popular of all neural networks is the Backpropagation network. This 

network has been successfully implemented in many applications. Among its earliest 

achievements was speech synthesizing from text in a system called NETalk developed by 

Sejnowski in the late 1980s [Anderson, 1988]. According to Kosko [1989] a tape recorder 

replayed NETalk's training experience, from babble to baby talk to articulate speech. 

The backpropagation net-work is based on a feed-forward architecture called 

multi-layer perceptron architecture (Fig 2.8). This type of architecture has been 

theoretically proven by Hornike and White [White, 1989] to have the capability of 

approximating any Borel-measurable function to any desired accuracy. This holds 

Output 
layer 

Hidden 
layer 

Input 
layer 

Figure 2.8 
A schematic illustration of a feed-forward multi­
layer perceptron network with one hidden layer. 
All signal propagation is directed forward i.e. 
from the input neurons a; to the output neurons C;­

All nodes in two successive layers are connected, 
but only a selected set of node connections are 
shown to clearer explain the architecture. 

provided there are enough 

hidden nodes t.e. neurons 

between the input and the output 

layer. 

This network's learning 

algorithm is called the 

backpropagation learning 

algorithm gave the network its 

name. It was introduced by 

Rumelhart et al. in 1986 

[Rummel hart, 1986], who 

referred to it as the generalized 

delta rule. This algorithm is a 

nonlinear extension of stochastic 

theories for least mean square 

optimization. It is based on a 

gradient descent search on a 

random squared-error surface. 

Usually gradient descent methods are guaranteed to converge to a local minima, but 

because this error surface is stochastic in nature rather than deterministic, the 

backpropagation algorithm does not always converge and can oscillate or even wander 

chaotically [Kosko, 1989]. 



www.manaraa.com

16 

Another problem associated with the backpropagation learning is its 

computational cost. Adequate training can often be extremely computationally intensive. 

For large systems the training can take as much as days. 

In spite of the above mentioned problems, the backpropagation network is the 

most widely used neural network today. It is used for a wide variety of applications such 

as process control, speach recognizion, time series analyses, OCR, and approximation of 

complex or unknown transfer functions. 

2.6. Fuzzy Logic 

2.6.1. Introduction 

Fuzzy logic, introduced by Lofti 

Zadeh in 1965 [Zadeh, 1965], is a 

superset of traditional (bivalent) logic. 

Instead of only allowing only two 

values: true and false, fuzzy logic 

introduces a degree of truth. This 

degree, often referred to as membership, 

usually lies in the open interval 0 to I. 

{
1, if X E A 

J.lA(x)= . 
0, otherwtse 

(2.8) 

f.l A (X) E (Q, 1] (2.9) 

Membership 

1 -+-------.. 

Small Tall 

0+-------~~~~--------~~ 

0 

Fig 2.9. 

5.7 
h 

Height 

Illustration of two fuzzy memberships: 
Small, and Tall. The height h would have 
a membership of about .25 and. 75 in the 
classes Small and Tall respectively 

Equation 2.8 and 2.9 defines bivalent logic and fuzzy logic memberships respectively for 

the event x belonging to the class A. A practical example is shown in Fig 2.9. 

An interesting observation made by Kosko [ 1992] is that bivalent paradoxes 

stemming from the principle of non-contradiction (X AND not-X = 0) and excluded 

middle (either X OR not-X = I), appears as fuzzy midpoints. An example of such a 

paradox is a card that on one side has printed "The sentence on the other side is true" and 



www.manaraa.com

17 

on the other side "The sentence on the other side is false". The degree of truth in these 

two statements turns out to be 0.5 in the fuzzy domain from 0 to 1. 

A more practical and intuitive application of fuzziness can be seen from 

considering the classical sorites paradox. According to bivalent induction we can remove 

graines of sand one by from a sand beach and after each grain argue that there is still a 

beach of sand. No grain takes us from a beach of sand to not a beach of sand. A fuzzy 

measure, however, would for each removed grain give a smaller membership value to the 

class beach of sand, and after removing the last grain the membership would be zero. 

2.6.2. Fuzziness vs. Probability 

At first fuzziness and probability can appear to be 

very similar if not the same. Consider a flaw-candidate 

that has a probability of 0. 7 being a flaw of a particular 

class and a fuzzy membership value of 0.7 to this flaw. 

What is the difference? The answer to this question is 

that the probability of 0.7 tells us that statistically 7 out 

of 10 flaw candidates of this type are flaws whereas the 

membership value of 0.7 tells us that this particular flaw 

candidate has characteristics that matches with a degree 

of 0.7 with the flaw characteristics. This is a fundamental 

difference that favors the fuzzy measure over probability. 

Mendel illustrated the difference between 

probability and fuzzy membership with two liquids A 

and B, A having 0.1 probability of being lethal poisonous 

and B having 0.1 fuzzy membership value of being lethal 

poisonous. Which liquid is safest to drink? After 

chemical analyses, it turns out that the liquids were both 

ordinary beer. This changed the 0.1 probability of A 

being poisonous to 0, but the fuzzy membership of B 

remained at 0.1. This is because the alcohol in the beer is 

a lethal poison, and revealing that B was a beer didn't 

change liquid B's characteristics. If choosing between 

liquid A and B, liquid B would be the safest because it 

Apriori 
.. 

? . 

Leathal? 
A: 0.1 probability 
8: 0.1 fuzzy membership 

Postpriori 

beer 

Leathal? 
A: 0.0 probability 
8: 0.1 fuzzy membership 

Fig 2.10 
The dijference benveen 
probability and fuzziness. 



www.manaraa.com

18 

would never be lethal (only 0.1). Choosing liquid A would be lethal in 1 of 10 instances 

which dramatically increases the risk. 

From the above discussion it should be apparent that probability is a 

categorization of a type of phenomena whereas fuzziness is an earned score based on 

characteristics of the particular event in interest. This means that the fuzzy measure is a 

more well behaved and reliable descriptor than probability. This claim is of course built 

upon the assumption that the fuzzy membership function correlates with reality. In real 

life, it can often be difficult to find good fuzzy membership functions. However, this is 

comparable to statistical analyses that often assumes or approximates necessary 

distributions. 

2.6.3. Membership Functions 

The fundamental building block in a fuzzy 

logic system is fuzzy member functions. Member 

functions for the two classes Small and Tall was 

given in Fig 2.9. These were based on piece wise 

linear functions. Once can ask: How should 

membership functions be designed? To this 

question there is no right answer, which is one of 

the largest disadvantages of fuzzy logic techniques. 

Creation of membership functions is often quite 

arbitrary. Membership functions are therefore 

created heuristically, based on the designers 

experience and understanding of the problem to 

solve. 

Commonly used membership functions are 

piece-wise linear and gaussian. The reason for this 

is partly ease of implementation, and partly because 

these functions have proved to be useful. Examples 

of fuzzification of a variable domain using these 

functions is shown in Fig 2.11 a) and b). 

Jl, !\ l''> 7'\ /\ I 
i \\ i \ i \ I \ ; \ i 
1l ! i i \ I \ I \ . 
~\1 II \i \ \\I 

l/ \1 \t \1 I y ,, \! y il 
'I .~ Y. '\ X 
j·\ 1\ i\ i\ /\ 
I, 1\/\ I\;\ 

. ./ 'J '/ '-./ ,..,.. ' 
vllflablodomain 

a) Gaussian fuzzification 

b) Trapezoid fuzzification 

Fig 2.11 
Common types of fuzzification 
of a variable interval. The 
classes in b) could for example 
be labeled small, kind of 
sm,all, medium, kind of large, 
and large. 



www.manaraa.com

19 

2.6.4. Fuzzy Set Operations 

A membership function can be looked at as a set with all the possible values 

between and including 0 and 1. Operations on such a set or between two such sets are 

called fuzzy set operations. 

Unitary operations, operations on one set, are often called hedges. Hedges are 

linguistic modifications of a base class. The two most common hedges are associated 

with the terms very and somewhat. Examples of such modifications can be seen in figure 

2.12. c) Here the base membership "Fast" in b) is modified by point-wise taking the 

square root and square of the original, respectively, to create the two new hedge derived 

classes "Somewhat Fast" and "Very Fast". 

The most common binary operations, operations on two sets, are negation, 

conjunction, and disjunction. They are defined in eq. 2.1 0, 2.11, and 2.12 respectively. 

There are also many other binary fuzzy operations, but the mentioned operations are the 

most common because of their simplicity and robustness to noise. 

~:;r(X) = 1-~A (X) 

~Ar 8 (x) =min[~ A (x),~8 (x)] 

~Au 8 (x) =max[~ A (x),~8 (x)] 

(2.10) 

(2.11) 

(2. ~2) 

To see what these fuzzy operations really means it useful to look at a practical 

example. Consider an inspection system that is to be described using the two membership 

functions inexpensive and fast. These can be seen in Fig 2.12 a) and b) respectively. The 

input variable in both these classes is price. In Fig 2. I 2 d) the class "Inexpensive" is 

negated to create the class "Expensive". In e) the new class "Inexpensive and Fast" has 

been created by a conjunction between "Inexpensive" and "Fast". In f) the class 

"Inexpensive OR Fast" has been generated by a disjunction of the same two base classes. 

2.6.5. Translating IF-THEN Rules to Fuzzy Domain (inference) 

Fuzzy logic systems have the unique feature that they can utilize linguistic rules, 

rules based on quantitative information which resembles ~veryday speech. This can allow 

a doctor to design an expert system using the following type of rules: IF the body 



www.manaraa.com

20 

temperature is high and the color of the face is pale THEN the patient is ill. Such rules 

can be fuzzified using for example the strategies illustrated in Fig 2.13. 

When processing rules, the fuzzy system uses the basic operations of negation, 

AND, and OR. A rule is a way of deducing a conclusion based on the given data. Most 

deduction is based on modus ponus. This types of reasoning can be illustrated as follows: 

Rule: 

Premise: 

Conclusion: 

All male humans have a Y-chromosome 

This human is a male 

This human has a Y-chromosome 

The two most common methods for applying such a reasoning to fuzzy sets are 

correlation minimum and correlation product. In both strategies the basic conclusion 

membership class is modified with the degree of thruth of the premise. Correlation 

minimum is simply taking the point-wise minimum of the premise and the basic 

conclusion membership class as seen in Fig 2.13 c). Correlatiqn product, on the other 

hand, performs a multiplication between the value of the premise and the basic 

conclusion membership. 

a) b) 

$ 

d) e) 

$ 

Fig 2.12 

c) 

$ 

f) 

$ 

Inexpensive 
OR Fast 

$ 

$ 

Illustrations of fuzzy set operations. a) and b) original fuzzy sets, c) hedges, d) negation 
of "Inexpensive", e) conjunction between "Inexpensive" and "Fast", f) disjunction 
between "Inexpensive" and "Fast". The input variable for all classes is price in dollars. 



www.manaraa.com

21 

Carr. Min. 

a) b) c) 
A=0.75 

d) 
A=0.25 

Fig 2.13 
Illustration of translating the rule ''IF A THEN B" into fuzzy domain. The original 
membership classes A and B are shown in a) and b), respectively. Marked in A is also the 
two cases of A=0.25 and A=0.75. Two alternative correlations with Bare shown in c) 
and d). Each correlation strategy is shown for both cases of A as labeled. 

A practical example will illustrate how these two strategies differ. Consider the 

rule: 111F A THEN B 11
• Assume class A and B has the membership functions in Fig 2.13 a) 

and b) respectively. With these membership functions and the two cases where A=0.25 

and A=0.75, we would get the fuzzy translations of the rule as illustrated in Fig. 2.13 c) 

and d). From Fig 2.13 c) we can see an apparent disadvantages of the method of 

correlation minimum when considering the case of A=0.25. For this case all information 

in the basic conclusion membership function shown in Fig 2.13. b) is lost for function 

values larger than the degree of truth of A (the premise). The method of correlation 

product shown in Fig 2.13 d), on the other hand, is scaling the conclusion membership 

and thereby keeping all the original information. 

2.6.6. Combining Fuzzy Rules 

The basic idea when combining fuzzy rules is that rules with the same conclusion 

are ORed and rules with opposite conclusion are ANDed. Let's consider a practical 

example. Consider a simple flaw detection system that has the fuzzy rules: 

Rule 1: IF steep edge AND low mean THEN flaw detected 

Rule 2: IF not-steep edge AND round contour THEN flaw detected 

Rule 3: IF not-critical location, THEN not- flaw detected 

The flaw detection system we have defined uses four features: edginess, mean, contour 

shape, and location. The necessary membership functions associated with these variables 

are defined in Fig 2.14 d), e), h), and j) respectively. The base membership function for 
11Flawll is defined in 2.14 a). 



www.manaraa.com

22 

The three bottom rows in Fig 2.14 correspond to the three rules. The horizontal 

stippled lines are indicating degrees of truth of the premises. As defined in chapter 2.14 

ANDing two premises is the same as choosing the minimum of their degree of truth. This 

minimum is then used to modify the base membership "Flaw". Comparing this 

membership with Fig 2.14 f), i), and I), it is apparent that our system is using correlation 

product inference as defined earlier. 

Combination of rules can bee understood by looking at Fig 2.14 c). The point­

wise maximum of rule 1 and rule 2 are chosen (ORing) because these rules have the same 

conclusion, namely flaw detected. The point-wise minimum of the resulting membership 

function and the membership function from rule 3 is then calculated (ANDing) because 

the third rule has an opposite conclusion membership of the first two. The grand result is 

marked with thick line and represents the fuzzy domain of all rules combined given the 

particular values of the premises. 

However, the result in Fig 2.14 c) would be of little use for an operator who wants 

to know whether there is a flaw or not. This is taken care of in the defuzzification which is 

described in the next section. 

2.6.7. Defuzzification 

Defuzzification is the process of translating the combined fuzzy membership of 

all rules into a scalar. For this purpose there are two commonly used methods. One 

method is to choose the point whose membership is the largest. This has the 

disadvantages that the membership function has multiple maxima. A more reliable 

method is to find the centroid. The centroid can be interpreted as the point at which the 

membership would balance if it was made of a homogeneous solid and is defined as 

follows: 

I xJ!(x)dx 
X - -=-D::------- I J!(X )dx ' 

D =domain of J!(x) (2.13) 

D 



www.manaraa.com

23 

1 

d) 

1 ----------1·-------

g) h) ------ - j)_ - - - - --- -

Not-steep edge Round contour 

1 1 

j) --------------------"I) 

Not-criticallocation 

Fig 2.14 
The illustration shows how fuzzy rules are combined. The three bottom 
rows correspond to three fuzzy rules. The three rule outputs are then 
combined as shown in c). Rules with same conclusion are ORed and 
rules of opposite conclusions are ANDed. 

In practice, a piecewise linear approximation is used. By using a trapezoid model 

(Fig 2.15) any function can be estimated with arbitrary accuracy. Integration of such an 

approximation reduces to summing areas of trapezoids. Indexing the trapezoid with the 

variable i the expression for the centroid in closed form can be written as: 

L,~(b; -a;)[h.(2a; +b;)+~(a; +2b;)] 
x = --.!....; ----==-=-----------

L,~(b; -a;)(h. +~) 
(2. 14) 

i 



www.manaraa.com

24 

trapezoid i 

a b 

Fig 2.15 
Piece wise linear function approximation 



www.manaraa.com

25 

3. SHERLOCK 

3.1. Motivation 

The work with Sherlock was motivated by the large amount of human inspector­

based flaw detection in industry. If we could automate the inspection process by 

developing a system that could reliably find flaws in images without human supervision, 

a lot of man power, time, and money could be saved. Other advantages of an automatic 

computer-based system are increased consistency and quantified decision justifications. 

Consistency in a computer based-inspection is much higher than in a manual 

inspection system because manual inspectors perform differently, and performance of one 

particular inspector fluctuates over time due to drowsiness and external disturbances. A 

computer, on the other hand, would be absolutely consistent from time to time. 

Quantified decision justification are in general preferred for documentation 

purposes over qualitative judgment which often is quite subjective. If flaws can be 

described in numerical quantities, it can, for example, also be useful for comparison and 

categorization of flaws. In negotiation with suppliers or customers, quantified 

documentation can also play an important role. 

A computer based inspection system would also have potentials for automatically 

providing documentation of the inspection. In addition to being very convenient such 

documentation could include a confidence measure based on the numerical quantities 

(features) describing the flaws, which would be extremely useful in evaluating the 

inspection results. Flaw detection systems based on human inspectors, for comparison, do 

not have a good objective way of producing a confidence of classification. 

With all these highly desirable features of automated computer inspection one can 

ask oneself why inspection is done manually at all. There are two main reasons why 

automatic inspection systems are not more widespread today. Firstly, it is difficult to 

develop a computer system that is as reli~ble and fast as an experienced human inspector. 

Secondly, people in the decision making positions are often unfamiliar with the 

techniques used in the automated computer systems and are therefore less likely to trust 

inspection of large and expensive productions to such systems. 



www.manaraa.com

26 

3.2. Design Objectives 

The objective I had for my work was to design a prototype system for automatic 

general purpose image based flaw detection. My hope was that my work would show the 

feasibility of such a system in an industrial setting. 

When starting out I had five major design objectives: automation, generality, 

reliability, speed, and portability. 

Automation is one of the key ideas behind Sherlock. To reduce the cost of manual 

inspection it would not be good enough to develop a semi-automatic system that would 

require an operator. The whole inspection process has to be automated, starting after 

image acquisition and ending with labeling of flaw regions. 

Generality was the other major principle driving this work. I wanted to make a 

system that was applicable to any type of image based flaw detection i.e. a system that 

could find any type of flaw in any type of image. This objective was motivated by the 

large number of sponsors of the NDE center. Each of them have their own type of flaw 

detection problem, and if I could develop a general purpose system, it would be useful for 

all of them. Of course developing such a system is an enormous challenge, and I was not 

really expected to achieve this, but this area is of such importance that even some 

encouraging results would be interesting. 

Reliability is of course one of the most crucial factors in designing an inspection 

system, and the obvious comparison Sherlock would face is the performance of human 

inspectors. There are several industrial inspection systems on the commercial market, but 

many of them are outperformed by manual inspectors. It turns out that it is very difficult 

to emulate the performance of the human eye and to incorporate a human's experience 

into a computer algorithm. 

Speed is an other important factor of industrial inspection. Often, an inspection is 

preferred in real time in an assembly line fashion. Many computer algorithm that perform 

well are extremely time consuming. A trade-off is therefore often necessary between 

speed and reliability. 

My last design objective was portability. I wanted to involve the sponsors of the 

NDE centers as much as possible in my work since they are the experts and also the 

people who would eventually use a system like Sherlock in their daily work. It was 

therefore important that my work was easily ported to their machines. It was equally 



www.manaraa.com

27 

important that my program was easy to use. This is also a sort of portability that is 

important in a busy schedule. 

3.3. Short About Important Design Decisions 

To provide generality I chose to base Sherlock on a pattern recognition scheme. 

By equipping Sherlock with feature extractors that can pick out a lot of different 

information and classifiers capable of forming many types of decision boundaries, a wide 

variety of flawdetection problems can be solved. 

A pattern recognition scheme is also very modular and that can help improve 

Sherlock's reliability. By choosing appropriate feature extractor and classifier the 

inspection process can be tailored to each particular detection problem. If for example 

gradient information is important for one detection problem, gradient information can be 

extracted without including any other type of information which would only confuse the 

classifier. What classifier to choose can likewise be tailored to the particular problem at 

hand. If none of the implemented feature extractors or classifiers fit an encountered 

detection problem, better feature extractors and classifiers can be implemented without 

having to change or redo the detection scheme. This way Sherlock can be expanded to 

reliably solve new detection problems without redoing the whole work. 

Another important design decision was to implement Sherlock in MS Windows. 

The other alternative would be a MOTIF/UNIX implementation, but porting applications 

between different hardware platforms are a lot more problematic in practice than what 

hardware vendors want us to believe. An MS Windows application is therefore a lot more 

appealing since no porting is necessary between platforms running MS Windows. An 

other advantages of an MS Windows implementation is that most people seem to have 

access to a PC and are actually relying a lot on MS Windows based text editors and 

presentation programs. A computer based inspection system in MS Windows is therefore 

convenient since inspection results can be pasted directly into reports or presentations 

generated in another MS Windows application. 

Another aspect of an MS Windows implementation is that it is user-friendly and 

easy to use. By learning the basic principles of how the program works, a person with no 

schooling in pattern recognition can try the different algorithms and see how well they 



www.manaraa.com

28 

perform. This way my work would be easily available for evaluation by the NDE 

sponsors. 

A major counter argument for implementing Sherlock on a PC is of course speed 

considerations. UNIX workstations are in general much faster than PC's. This is starting 

to change though. PC's are getting increasingly faster and are closing the gap. In addition, 

PC's can be equipped w ith extremely powerful plug-in cards to tailor the system to the 

specific needs. If speed and computation power is the bottleneck, one can use a DSP 

board wh ich can boost the performance up to workstation level and above. If one wants to 

hook up the PC with a camera or any other image acquisition system, there are a variety 

of frame grabbers and interface modules to choose among. DSP boards and interface 

modules are also availble for workstations, but they are fewer and extremely expens ive . 

Another argument in favor of PC's is that UNIX workstations are often slowed by 

network jams. Considering all these factors, I think PC's are performance-wise the best 

platform for computer-based inspection. If we inc lude price in the pictu re PC's become 

even more attractive. 

3.4. 

The basic working 

principles for a completed Sherlock 

in an industrial setting is illustrated 

in Fig 3.1. Inspection can either be 

done in real-time (in an assembly 

fash ion) or on previous ly acquired 

images . 

Before the inspection can 

take place, an operator is needed for 

the training process. The operator 

chooses methods of preprocessing, 

System Overview 

Digital image Source 

Fig 3.1 
System overview of Sherlock 

feature extraction, and classification based upon known examples of fl aws and non-flaws. 

After training the classifier, the system is ready to run, and can then continuously inspect 

dioital imaoes for fl aws without human supervision. To check the detection results, an 
0 0 

operator can print out the automatic generated detection reports. 



www.manaraa.com

29 

For this thesis, all the fundamental stages in the above described system were 

studied and implemented. Two tasks remain before Sherlock can be installed in an 

industrial facility. First of all it needs a macro unit for automatic loading of images and 

execution of chosen algorithms. In addition, it is also missing the capability of automatic 

generation of detection reports. None of these tasks is interesting from a research point of 

view and were therefore not implemented because of lack of time. 

3.5. Detection Scheme 

Sherlock is based on a 

pattern recognition scheme as 

described in Chapter 2 and 

illustrated in Fig 3.2. The input 

image is mapped to feature 

space using different feature 

extractors and boundaries 

between flaws and non-flaws 

are then found by any of the 

classifiers. This scheme could 

also be used for 1-D data such 

as ultrasonic A-scans. To 

accomplish this, a new battery 

of feature sets would be needed. 

Input Image I 
Preprocessing I 

- Feature Extraction I 
- Classification 

L...--

Output Image 

~ 

Fig 3.2 
The basic processing stages of Sherlock. 

I 

The processing stages of Sherlock are illustrated in Fig. 3.2. Input images are 

preprocessed if necessary before feature extraction. The feature vectors are then fed into 

the classifier which dumps the classification result on the· screen as an image in which 

flaws and non-flaws are colored differently. 

3.6. Preprocessing 

Preprocessing can be any type of image processing that would ease the detection 

task. A simple preprocessing step would be noise cleaning. Sherlock supports three types 

of noise cleaning: spatial averaging, median filtering, and Butterworth low-pass filtering. 



www.manaraa.com

30 

Other preprocessing techniques could be removal of trend or geometry. Trend 

removal is removing a general background trend. This is often done by fitting and 

subtracting a polynomial. Geometry removal is the process of removing intensity 

variations in the image due to the structure and geometry of the specimen being 

inspected. Either of Ulmer's [1992] or Siwek's [1994] methods could be used for this 

purpose. Neither trend or geometry removal is implemented in Sherlock. Implementations 

of such algorithms can be quite time consuming and is outside the scope of this work. 

3.7. 

Feature extraction in Sherlock 

is done by moving a rectangular 

window on top of the input image 

shown in Fig 3.3. Within this 

window a set of numerical 

characteristics is calculated, for 

example, the mean and the variance. 

Each of these numerical quantities 

represent a feature as defined in 

chapter 2 while they collectively 

define a feature vector that is 

Feature Extraction 

Fig 3.3 

I I I I 
I I I I 

... ,. ..... ---r••• ...... ., ...... ---~-· 

--+--'---+-___;,__-+-_.__._ : . . 

-!--t--+--t--~-i---+-- • 
I I I I 
I I I I 
I I I I ·-r- · · · · ·- r- --• • -· ~ ·------ ~- • 

Illustration of feature extraction. 

associated with the center pixel. By moving the window pixel by pixel, each pixel is 

represented with a feature vector. When this vector is classified as being a flaw or a non­

flaw, so is the pixel. 

In most instances, flaw detection does not require 1-pixel resolution. To save time 

and computation it can be useful to move the window more than one pixel at the time. By 

moving the window k pixels at the time, the computation is reduced with a factor of k2 

which is paid for with a resolution of kxk pixels in the output image. Consider the case in 

which the window is moved four pixels in each direction. This means that the calculated 

vectors are effectively associated with the 4x4 pixel center areas of the window. Each 

vector therefore represents 16 pixels which of course only requires 1116 of the original 

computation and cannot give a better resolution than 4x4 pixels in the output image. In 



www.manaraa.com

31 

Sherlock's terminology the window size is called feature support and k, the number of 

pixels the window is moved each time is called grid size. 

An interesting interpretation of the feature extraction process is that it can be 

looked at as a mapping from 

one image (the input image) to Input Image Feature Maps Output Image 

n images where n is the number 

of features in the feature vec­

tors. Fig. 3.4 is an illustration 

of this. If the mean was the first 

element in the feature vector, 

an image could be created by 

combining all the means. I call 

images created from the feature 

vectors feature maps. I use the 

term map because these images 

gives associations to maps 

where different elevations are 

colored differently. 

Feature Extraction Classification 

Fig 3.4 
Illustration of how feature extraction can be 
looked at as a mapping from one image to n 
images (feature maps) where n is the order of the 
feature vector. Feature vectors can be assembled 
by collecting intensities of pixels with the same 
coordinates. 

Feature maps can be utilized when evaluating a feature's capability to discriminate 

between flaws and non-flaws in a feature. The easier a flaw can be distinguished from the 

rest of a feature map, the higher is this feature's discriminatory capability. If it is 

absolutely impossible to see the flaw in a feature map, it's feature contains very little 

information, if any, that is useful for classification purposes. 

By looking at Fig. 3.4 it is apparent that the classification can be considered as a 

mapping from n images to one image. This interpretation is of less importance and is not 

emphasized in Sherlock. 

3.8. Implemented Feature Sets 

3.8.1. Introduction 

The feature sets implemented in Sherlock can be divided into two groups: texture 

descriptors and geometry features. These feature sets give complementary type of 



www.manaraa.com

32 

information and cover a broad information range, making Sherlock applicable for a wide 

variety of flaw types. 

Geometry features are the most intuitive and these descriptors give information 

about edges, contours, and geometric shapes. Many geometry features are transfom1 

based. Image transforms can often be interpreted as a 2-D expansion analog to the 

familiar 1-D Taylor series. The first terms in such series contain the most energy because 

they describe the general signal trend whereas 

the later terms describe the smaller signal 

fluctuations. By analyzing such Image 

expansions certain terms can prove useful in 

discriminating between flaws and non-flaws. 

The other feature category is textures, 

and texture can be defined as a mixture of 

edges and irregularities that combined have 

the appearance of a more or less 

homogeneous pattern. The examples in Fig 

3.5. are natural textures taken from the 

Brodatz album. Brodatz textures are 

commonly used in texture analyses. 

In fl aw detection, textures can be a 

useful way to describe flaws. Some flaws can 

Fig 3.5 
Examples of four natural textures 

be described in terms of edginess or geometry. Examples of an edge flaw would be 

cracks, and a geometry flaw wou ld for example be a spherical-type void. Many flaws, 

however, does not have a particular shape or geometry associated with them. In those 

cases texture features can be valuable descriptors. 

There are three types of texture features that are implemented in Sherlock. All 

three of these feature sets are statistically based. Statistics alone do not necessari ly 

completely describe a texture, but they can often give enough information to discriminate 

between different texture types. 

The rest of this chapter will discuss the implemented features in greater detail 

s tarting w ith the statistical texture features. 



www.manaraa.com

3.8.2. First Order Histogram.Features 

First order histogram features 

are revealing properties of the ordinary 

pixel intensity distribution in the 

neighbor-hood, feature support, of the 

center pixel(s) (see Fig. 3.6). The term 

first order is used because such 

histograms corresponds to the 

continuous first order pdf. 

Since no location information 

(within the feature support) is included, 

33 

lma~e 

Center pixel(s) 

':;'''~··'n''' --It~~ Feature support 

Fig 3.6 
Feature extraction 

there might be several subimages that have equal or similar first order histograms. 

However, information about the intensity distribution alone can often be sufficient to find 

the flaws. 

The first order histogram is as earlier mentioned a discrete approximation to a 

continuous density function. Denoting the density function P(b) the approximation can be 

formulated as 

P(b) = N(b) (3.1) 
M 

where b is the intensity value, N(b) is the number of pixels with intensity value b and M is 

the number of pixels in the feature support. 

Altogether, there are six first order histogram features implemented in Sherlock: 

mean, standard deviation, skewness, kurtosis, energy, and entropy. These features are 

defined as follows: 

3.8.2.1. Mean 

The mean (see eq. 3.2) is the simple arithmetic mean and gives the average pixel 

intensity over the feature support. The usefulness of this feature alone is often rather 

limited, but combined with other features, the mean is often quite significant. 



www.manaraa.com

34 

Mean, 

Standard deviation, Sv =[L<b-b)2 P(b)T
12 

Skewness, Ss =~ L,Cb-b) 3 P(b) 
(Jb 

(3.2) 

Kurtosis, SK =~ L,<b-b)4 P(b) 
(Jb 

Energy, SN = L,[P(b)]2 

Entropy, S E =-L, P(b) log2 P(b) 

3.8.2.2. Standard Deviation 

Standard deviation (see eq. 3.2) 

IS also a well-known statistical 

property. This is essentially the average 

deviation from the mean over the 

feature support. A standard deviation 

of 2.4 means that the pixels on average 

deviate from the mean by 2.4 intensity 

increments. 

The standard deviation does an 

excellent job in detecting edges and 

spikes on relative horizontal surfaces. 

If there are significant background 

trends, some caution is needed in 

interpreting the standard deviation. 

Such trends would, of course, also 

spark large standard deviations without 

warranting labeling the area of interest 

as an area with edges or spikes. In such 

situations, it can still be possible to 

discriminate between areas of flaws 

a) Horizontal surface 

-if"- --~.,__ __ 

b) Linear trend 

Mean for trend w/o flaws ------------

Larger Sdev Smaller Sdev 

Fig 3.7 
Comparison of different interpretations of 
the standard deviation. For horizontal 
surfaces (a) flaws will trigger large 
values. If there is a trend as in (b) the 
same type of flaws can have different 
effects depending on their locations. 



www.manaraa.com

35 

and non-flaws if the trend is stable and the flaw significant enough. In areas with flaws, 

the standard deviation would be either larger or smaller depending on the nature and 

location of the flaw (Fig 3.7.). 

3.8.2.3. Skewness 

Skewness (eq.3.2) is the 

third central moment and is a 

measure of how symmetric the 

histogram is about the mean 

intensity value. Mathematically 

it is the mean cube deviation 

from the mean where the 

deviation is measured tn 

standard deviations. 

For a perfectly 

symmetric distribution, the 

skewness is zero. The skewness 

can obviously also take both 

negative and positive values 

a) Symmetric distribution 

skewness= 0 

b) Skewed distribution 

skewness is 
positive 

/1\. 
i \ 

I \ ./ ,, 
mean 

1'-1\. 
! \ 
! \ 
! \ 
i \ 

) \, 
mean 

c) Skewed distribution with outliers 

Fig 3.8 

skewness is 
negative 

mtan 

Properties of statistical skewness 

where negative values in general means that the histogram is heavier on the lower 

intensity range, and positive values means that the histogram is heavier in the higher 

intensity range. The qualifier "in general" is used because the skewness is very sensitive 

to outliers. The skewness can be negative and still have the centroid above the mean if 

there are some sufficiently extreme outliers in the lower intensity values (see Fig 3.8.). 

Interpreting the actual skewness of a distribution based on the statistical skewness defined 

in eq. 3.2. can therefore be dangerous. However, in flaw detection we are not concerned 

about finding a perfect measure of skewness, but rather a descriptor that can distinguish 

between flaws and non-flaws. In certain instances, the outliers are exactly the 

characteristics that enable us to do that, and then the statistical skewness is useful. 



www.manaraa.com

36 

3.8.2.4. Kurtosis 

Kurtosis (see eq. 3.2) is the fourth 

central moment and can be used as a measure of 

relative flatness, or alternatively peakiness, of 

the intensity distribution. Kurtosis is like 

skewness normalized with the standard devi­

ation and is of this reason also sensitive to 

outliers -- in fact even more so since the 

deviation from the mean is raised to the power 

of four. 

If considering only unimodal 

distributions, the kurtosis increases with 

peakiness. As seen from Fig. 3.9. uniform, 

gaussian, and laplacian distributions have kur­

tosis of 1.8, 3, and 6 respectively [Alpesh, 1994]. 

In general distributions are neither unimodal nor 

symmetric. Then the kurtosis can be interpreted 

as a measure of busyness in the image that 

suppresses small deviations and weights larger. 

3.8.2.5. Energy 

a) Uniform 

K=1.8 

b) Gaussian 

c) Laplacian A 
K=6 

Fig 3.9 
Values of kurtosis for some 
distributions showing that 
kurtosis can be used as a measure 
of flatness or peakiness. 

Energy as defined in eq. 3.2 is a type of uniformity measure. This quantity is the 

smallest when all the probabilities are equal i.e. when the distribution is uniform 

[Gonzales, 1991]. Combined with mean, and variance, this can be a useful feature for 

detecting crack-like flaws. 

3.8.2.6. Entropy 

Entropy as defined in eq. 3.2 is also a sort of busyness feature. This feature is 

smallest for uniform distributions [Gonzales, 1991] and increases as the image becomes 

busier. 



www.manaraa.com

Entropy weight frequen­

cies differently as shown in Fig 

3.10 a). From the graph we can 

see that maximum weight of 

about 0.5 is given to proba­

bilities slightly less than 0.4. 

This does of course not suggest 

that uniform distributions with 

probabilities slightly less than 

0.4 will give the largest entropy 

values, but rather that distri­

butions where many intensity 

values have small probabilities 

will be favored. This is because 

the number of entropy terms in 

such distributions increases 

faster than the contribution of 

each term is reduced. This can 

be seen in Fig 3.10 b) which 

37 

-P(b)lo92[P(b)) 

a) ~ 
0.6~ 

M -~-·-----------""" ,, 
' 0.21/ -~ 

0 I I I I ~ 
0 0.1 0.4 0.6 0.8 -

P(b) 

Entropy 

b) • 

10 

For discrete 

\ 
uniform distributions 

'~ .. _ 
..... ._ __ _____ 

o~----~·~----~·~-------~~~··------=·1==·~-~·~ 
0 O.l 0.4 0.6 0.1 .-

P(b) 

Fig 3.10 
Illustration shows in a) entropy weighting of 
different probabilities and b) entropies of 
different uniform distributions. 

graphs entropies of different uniform distributions. The entropy in uniform distributions 

is equal to the log2 of the constant probability since the number of terms equals one over 

P(b). 

Another interesting characteristic of entropy is that the minimum average bits 

required to represent a signal is bounded downward according to Shannon by its entropy 

as defined in eq. 3.2 [Gonzales,l991]. This result would also enable us to deduce that 

images having many small intensities with small probabilities give large entropies. Such 

images are of course a lot more complicated than rather uniform images with few 

intensities and must be represented with a larger number of bits. 

3.8.3. Second Order Histogram Features 

Second order histogram features are as the name says second order statistics. 

~~second orderll means that two pixels are considered at a time and that the distribution 



www.manaraa.com



www.manaraa.com

39 

support. Often no discrimination is made between the cases [pl =a, p2=b] and [pl =b, 

p2=a ], and then the co-occurrence matrix becomes symmetric about the diagonal. 

I have implemented six different second order histogram features in Sherlock. 

These are autocorrelation, covariance, inertia, absolute value, inverse difference, and 

second order energy. Mathematically they are defined as follows: 

Autocorrelation, SA= LLabP(a,b) 
a b 

Covariance, Sc = LLca-a)(b-b)P(a,b) 
a b 

Inertia, S1 = LLca-b)
2 
P(a,b) 

a b (3.4) 

Absolute Diff . Sv = LLia-biP(a,b) 
a b 

Inverse Diff. S
8 
= 2.:2.: P(a,b) 

a b l+(a-b)2 

Energy, Sa= LLP2(a,b) 
a b 

3.8.3.1. Autocorrelation 

Autocorrelation is the mean of the product between the intensity pair (a,b). This 

defines a two dimensional surface spanned by a and b with maximum along the diagonal 

(Fig. 3.13). Since the autocorrelation also increases with larger values of a and b, it can 

be interpreted as a blend of a correlation and energy information. 

3.8.3.2. Covariance 

Covariance is a correlation measure between the two pixels. It is a scaled version 

of the well-known correlation coefficient and is therefore large positive for strong 

positive correlation and large negative for strong negative correlation. If the two pixels 

are uncorrelated, the covariance equals zero. 



www.manaraa.com

40 

3.8.3.3. Inertia 

Inertia (Fig 3.14) is a physical interpretation 

of the mean square difference between a and b. In 

this interpretation (a-b) and P( a, b) are analogous to 

distance and mass respectively. 

Since inertia is a measure of how much a 

and b differ raised to the power of two, small 

intensity fluctations will be suppressed while large 

intensity differences will be favored. This makes 

inertia an excellent feature for detection of edges. 

Edges are often very important flaw descriptors 

which explains why inertia is a very useful feature 

in flaw detection. 

3.8.3.4. Absolute Difference 

Absolute difference is the mean intensity 

difference between the two pixels p 1 and p2. For this 

reason it is also a useful edge detector. However, the 

difference is not raised to the power of two and does 

therefore not numerically separate relative uniform 

regions from edgy reasons as well as inertia. 

Absolute difference is of same reason less sensitive 

to outliers. 

Since both absolute difference and inertia 

provides edge information, they are related. Inertia is 

related to absolute difference as image energy is 

Fig 3.13 
Illustration shows how 
autocorrelation are largest on 
the diagonal while increasing 
with a and b. 

Fig. 3.14 
Inertia increases linearly with 
P( b) and quadratic with (a-b). 

related to image mean. Note here that the image energy is not energy as defined in eq. 3.2 

which is energy of the probability, but energy of the image intensity as defined as: 

Energy of image: (3.5) 



www.manaraa.com

3.8.3.5. Inverse Difference 

Inverse difference (eq. 3.4) 

is also a measure of how p 1 and 

p2 differ. The inverse difference 

has large values for uniform 

surfaces, but as soon as pl and p2 

start to differ the value diminish 

quickly. 

Inverse difference is the 

third and last features that 

measures the difference in 

intensity values between two and 

two pixels. The two other are 

inertia and absolute difference. A 

valid question IS then what 

information the inverse difference 

is adding that the other two 

41 

Inverse 1/ 
I /' 

'\ Difference I/ 
\ ;:/ 

\ Absolute 4"' 
\\ Difference// 

/' / V/ Inertia 

//X 
/ /'/ '"'····--

//_.,..-... -'"' --------·~-----.. ··--······--·----

la-b/ 
Fig 3.15 
A graph illustrating weighting of intensity 
differences between pixel 1 and pixel 2 for the 
three second order difference features. 

features don't. In fact, one could ask why we would need three features that measures the 

intensity difference between the two pixels at all; wouldn't one be sufficient? 

By looking at the graph in Fig 3.16 one can see how these three features differs 

and complement each other. These features discriminatory capacity over a particular 

interval range is determined by their dynamic range in this interval relative to its total 

dynamic range. Comparing a feature's discriminatory capacity for different regions can 

therefore effectively be done by comparing its first derivatives. By doing so, we can see 

that inverse difference obviously has a large discriminatory capability for small intensity 

fluctuations while having a poor resolution for medium and large intensity differences. 

This feature is therefore very suitable for distinguishing between surfaces that are quite 

uniform. Inertia on the other hand has a great discriminatory capability for different kinds 

of edginess because of its exponential growth. However, for the uniform-like surfaces 

inverse difference could separate, inertia would do a poor job. The most general of the 

three is the absolute difference which is a linear measure of how the two pixels differ. 

The absolute differences are not as good at separating uniform surfaces or distinguishing 



www.manaraa.com

42 

edges as inverse difference and inertia respectively, but with a suitable classifier it could 

do a decent all-round job. 

3.8.3.6. (Second order) Energy 

Second order energy as 

defined in eq. 3.4 is as its first 

order counter part a probability 

energy and is a measure of 

uniformity. The more uniform the 

surface is, the higher the feature 

value. This can be understood by 

using the same argument as in 

discussion of inertia, this feature 

has best discriminatory capability 

in cases where the probability is 

large. In the lower probability 

region this feature has a poor 

resolution. One can therefore 

conclude that this feature can 

discriminate between uniform-like 

First 
Derivatives 

Inverse ·e. 

(
.\ \{\e~~ ... 

\difference , ... / 

f . . . \ . . . . . ---~-:< -. -----. 
j "\- _. / .-· ~ ~~:;:~~~e 
I / ,~ 
" ,. ·' '····-~····----··--·-· 

-
la-b/ 

Fig 3.16 
Graph of first order derivatives scaled 
independently. These graphs shows the features 
discriminatory capacity distributed over the 
intensity difference range. 

surfaces. Outliers (small probabilities) will have a small influence on this feature which 

means that it will do a poor job in detecting sharp edges and noise-spikes. 

3.8.4. Focused Second Order Difference Features 

This is a set of features suggested by the author that can be useful in 

discriminating between similar edginess over the whole intensity difference range from 

uniform to extremely peaky. 

The idea is to genera1ize and improve on the strengths of the traditional second 

order histogram features inertia, absolute difference, and inverse difference. As discussed 

earlier, all three of these are useful intensity difference measures -- inertia for high 

differences, inverse difference for low differences, and absolute differences for an all 

round useful descriptor ( se Fig 3.16. ). 



www.manaraa.com

An apparent weakness these 

features have is that none of them 

particularly addresses information in the 

midrange intensity difference interval. 

For detection problems where high 

resolution is required in this interval 

these features are pushing more of the 

discriminatory responsibility over to the 

classifier. 

One improvement would there­

fore be to tailor a feature for this region. 

43 

Midrange 
feature 

Fig 3.17 
la-b, 

A feature useful for discriminating 
between edges in the midrange intensity 
difference interval. 

Such a feature could for example look 

something like the feature illustrated in Fig 3.17. 

Two important characteristic of this midrange feature are worth noting. First of all 

this feature is zero outside the midrange interval. This means that it only focuses on what 

it was designed for, the midrange intensity differences, without getting disturbed by other 

irrelevant information. Secondly, the feature is monotonically increasing in the interval of 

interest. This means that a particular feature response can be tracked back to a particular 

f;(la-b/) 

la-b/ 
Fig 3.18 
Linear focused difference features. 

intensity difference, and this 

one-to-one mapping is often 

useful m the classification 

process. The shape of the 

mapping function should be 

chosen such that the classes are 

separated as far a part as 

possible. 

The focused difference 

features are a generalization of 

the idea behind the midrange 

feature. By using a number of such features scattered over the whole or most of the 

intensity difference range, edge discrimination can be done with high precision for a wide 

variety of edges. An example of linear focues difference features is shown in Fig. 3.18 



www.manaraa.com

44 

Absolute difference features 
a) X X JHG<Eifmll) .. 

la-b/ 

Features from f1 
C) X X ><XX X X 000 00 0 00 la-b/ 

Features from f2 

d) ~x~>e<~--~x~¥X---¥X---------AQAO~o~~OTAO--~~~/ 

Fig 3.19 

The advantages focused 

difference features have over 

traditional difference features is 

that they can be tailored to the 

particular problem at hand. 

First of all they can be focused 

on the particular interval of 

interest, and thereby greatly 

increase edge resolution. In 

addition, they can reduce multi­

modal problems to unimodal 

problems. This can be 

extremely useful in the classifi-
Simplifying a multi-modal problem by using two 
focused difference features. X and 0 denotes 
features from class] and class2 respectively. cation process. Consider the 

origin~l absolute difference 

features in Fig 3.19a. Difficulties are here encountered because the two classes, labeled X 

and 0, are each multimodal and are clustered in two or more clusters. By choosing 

appropriate difference features, for example those shown in Fig 3.19 b), the problem is 

reduced to a unimodal problem as seen in Fig 3.19 c) and d). 

Focused difference features can of course be used in combination with other 

features as well. The local mean would for example be a good complementing feature 

since focused difference features contain very little information about the general 

intensity trends in the image. 

3.8.5. Cosine Transform Features 

The discrete 2-D cosine transform extracts spectral information and is widely used 

in image compression because of its good energy compaction property and computational 

efficiency. The author has found cosine transform features most suitable for detection of 

edges and determining orientation in textures. The cosine features can also do a good job 

in suppressing simple trends. 



www.manaraa.com

45 

Mathematically, the discrete 2-D cosine transform pair is defined as: 

C(u, v) = a.(u)a.(v) I, L,f(x, y)cos cos ---
N -IN -I [(2X + l)U1t] [(2y + l)V1t] 
x=Oy=o 2N 2N (3.6) 

f(x, y) = a.(u)a.(v) I, I, C(u, v)cos cos ---
N -IN-I [(2x + l)u1t] [(2y + l)V7t] 
x=Oy=o 2N 2N . 

If for u = 0 

where a.(u) = 

~ otherwise 

where N x N is the dimension of the imagef(x,y). 

To better understand the information extracted by the discrete 2-D cosine 

transform, it is useful to consider the cosine transform as an image expansion. Well­

known examples of 1-D expansions are Taylor expansion and Fourier series. What these 

1-D expansions are doing is emulating the original signal using a set of basis functions. 

The 2-D cosine transform is doing exactly the same in two dimensions. Its basis images 

are defined by: 

B,; v (x, y) = cos · cos (3.7) [
(2x + l)u1t] [(2y + l)v1t] 

. 2N 2N 

The total number of basis images equals toN 2 where N as before is the image dimension 

in each direction. Basis functions for N=4 are illustrated in Fig 3.20 using dark to signify 

low values and light shades for high pixel values. Combining these basis images, the 

original image can be completely represented. 



www.manaraa.com

46 

For classification purposes, only the 9 

first coefficients are used. For a 4x4 image 

thi s corresponds to the individual weighting 

of the 9 upper-left basis images in Fig 3.20. 

These coeffi cients represent the lower 

frequencies which is where most of the 

information is . By choos ing these 

coefficients as features the information loss is 

minimized . Due to the excellent energy 

compression properties of the cosine 

transform, the actual information Joss using 

these features is usually small. 

By studying the discrete cosine basis 

fu nctions, it is easy to understand how the 

v 

"r-[J 
2 3 

t: 
'-- '- ~ 

~ 
2 ~ 

~ 
Fig 3.20 
Discrete 2-D cosine transform basis 
functions for N=4 

cosine transform can provide useful features in image analyses. S ince the basis function 

are representing increasing ly higher spatial frequenc ies, the cosine coefficients can be 

used to discriminate between different types of edginess. By observ ing that hori zontal and 

vertical frequencies are increas ing independently it is also apparent that the cosine 

transform can produce good descriptors for determining texture orientation. For example. 

the basis image corresponding to u=O and v=2 wil l be weighted heavi ly for horizontal 

!Image 1-
Original Image 
ima e transform 

Fig 3.21 
Illustration of extracting 
features (shaded gray). 

Image transform 
Features 

transform 

edges, but will completely ignore any 

vertical trends and edges. For 

determin ing orientations that are not 

stric tly horizontal or vertical one wou ld 

rely on coefficients that are associated 

with basis images that contain the 

appropriate combination of horizontal 

and vertical frequenc ies. 



www.manaraa.com

47 

3.8.6. Hadamard and Walsh Transform Features 

Other image transforms can of course 

also be used to extract geometric and 

spectral information, and in Sherlock two 

other well-known transforms are 

implemented: the Hadamard transform and 

the Walsh transform. These transforms are 

computationally extremely efficient. They 

don't have as good energy compaction 

properties as the cosine transform, but the 

information they extract is similar to that of 

the cosine transform. 

The Hadamard and the Walsh 

transforms have binary basis images which 

structurally resembles the basis images of 

Fig 3.22 
Ordered Hadamard basis images for 
N=4 

the cosine transform. This explains why these three transforms extract similar type of 

information. Fig 3.22 shows the ordered Hadamard basis images for N=4. For this case, 

the Walsh transform has exactly the same basis images ordered differently. 

Mathematically the Hadamard and the Walsh transforms are defined as: 
1 

T(u, v) = -LLJ(x,y)B,,,.(x,y) 
N X y (3.8) 
1 

f(x,y) = -LLT(u, v)B,,,.(x,y) 
N II v 

where T(u, v) is the transform, f(x,y) is the original image and B,,v(x,y) is the set of basis 

images. The basis images for the ordered Hadamard and Walsh transform are respectively 

defined as: 

11-1 

_r [";<x>f';<">+h;<Y>II;<v>] 
B,~v (x, y) = ( -1)•=o (3.9) 

')ll''; (x) 1111 _ 1_; (ll)+b; (y) 1111 _1-i ( v)] 

B,~v(x,y) = (-1)'=0 (3.1 0) 



www.manaraa.com

48 

where bk(a) is the kth bit of the binary representation of a, summation is a modulo 2 

summation, and pk(a) = bn_ia) + bn-k-la). 

Because of the better energy compaction, the cosine transform would in general be 

the preferred choice over the Hadamard and Walsh transform. However, if computation 

time is a consideration, either of the two latter transforms would be a serious altemati ve. 

Lastly, it should be mentioned that all of these three transforms can be implemented in 

fast algorithms analogous to the FFf. 

3.9. Implemented Classifiers 

3.9.1. Introduction 

This chapter is discussing the implemented classifiers in details. A number of 

classifiers was implemented because it is important for a general purpose package as 

Sherlock to have a good selection of different classifiers from which to chose. A 

particular classifier will have its strengths, but will not be superior for every classification 

problem. Classifiers differ in how they determine decision boundaries, in training 

requirements, and classification speed. The optimal classifier doesn't exist, but an ideal 

classifier for a given problem will fit the chosen feature set while not being excessively 

complex and time consuming. Before discussing the classifiers, feature normalization will 

be addressed. This is an important area, particular for classifiers using distances in feature 

space as a measure of similarity of two feature vectors. 

3.9.2. Feature Normalization 

Feature normalization is often a crucial link between the extracted feature vectors 

and the chosen classifier. Feature normalization can, if ignored or done poorly, 

completely ruin the classification result. The type of feature normalization discussed here 

is individual feature normalization for calculation of distances between two feature 

vectors in feature space using the Euclidean distance function. 



www.manaraa.com

49 

The Euclidean distance d between two n dimensional vector A and B is defined as 

n-l 

d(A,B) = l',Ca; -b) 2 (3.11) 
i=O 

Such a distance measure would weight features differently depending on their numerical 

magnitude. Consider a feature vector containing the features weight and height in pounds 

and feet, respectively. The distance between two such features in feature space would be 

largely dominated of the difference in weight. This occurs because weight can vary by 

tens of pounds from person to person while the height only fluctuates with a foot or so. 

This large numerical unbalance would bias the classification by effectively suppressing 

the information content in the height and only relying on the weight feature. Such a 

biasing is of course completely unjustifiable because the information content of a feature 

is not related to its numerical deviation. Finding distances between features in the feature 

space must therefore be normalized in order to weight individual features equally. If a 

particular weighting is desired, the weighting should be proportional to the feature's 

discriminatory capacity and nothing else. 

Four different weighting strategies are available in Sherlock. Two of these 

normalizes the features itself and two are including weights in the distance function. 

A common normalization method is to scale the features individually. In Sherlock 

one has the opportunity to scale the features from 0 to 1, or to scale the features by 

subtracting the feature mean and dividing by the feature standard deviation. These are 

common techniques that both ensure that distances between feature vectors depend quite 

equally on the individual features. 

The method of introducing weights in the distance function has the advantages 

that the original features are not changed. This can be useful in feature analysis. By 

normalizing the features independently, some of the relational information between 

different features is lost. Two types of weights are available in Sherlock. The individual 

feature distance can either be normalized with respect to standard deviation or the 

maximum deviation from the mean (suggested by the author). Of the two, the maximum 

deviation is found to be the most sensitive to outliers. This can be both positive or 

negative depending on whether outliers are important or not for the classification. Which 

weighting that does the best job depends from application to application. 



www.manaraa.com

50 

3.9.3. K-mean 

The K-mean (see Table 3.1) is a commonly 

used clustering algorithm. It is an unsupervised 

classifier that doesn't need any training, but 

organizes the features in K spherical clusters using a 

distance function of choice. The algorithm 

independently minimizes the squared within cluster 

distance which is defined as: 

Jj = Lllx -zj<k + 1)1r (3.12) 
XeS1(k) 

The K-Mean Algorithm 

1) Input number of clusters 

2) Input initial cluster centers 

3) Assign all feature vectors to 

closest cluster center. 

4) Assign new cluster means 

as new cluster center. 

5) IF cluster centers have 

changed THEN go to 3) 

6) K-mean has converged. 
Table 3.I 
The K-mean algorithm 

where X denotes feature vectors, ~(k+1) is the new 

cluster center for cluster j, j=l,2, ... ,K, and Sik) are the members of cluster j after iteration 

k. 

Initially the K-mean algorithm requires the number of desired clusters (classes) in 

the output image, and initial guesses of where these clusters are located in feature space. 

Since the latter often is pretty hard to know ahead of time, the first K feature vectors are 

generally chosen as initial cluster centers. All feature vectors are then assigned to the 

closest cluster center. When all feature vectors are assigned, new cluster centers are 

calculated to minimize the objective function in eq. 3.12. It is easy to show that this 

cluster center simply is the mean of the cluster vectors: 

The first derivative of the objective function in eq. 3.12 is 

dJj =(-2)· Lllx -Zj(k+ 1)11 
azj(k + 1) XeS

1
(k) 

which should be set to zero to find the optimal cluster center: 

Lllx -Zj(k+Oil= 0 
XeS1(k) 



www.manaraa.com

51 

which gives: 
LX= Nj ·Zj(k+ 1) 

XeS1(k) 

where~ is the number of feature vectors in S/k). 

The optimal cluster center is then: 

which is the cluster mean. 

1 
Zj(k+l)=- LX 

Nj XeS1(k) 

The disadvantages of the K-mean is that it is relative slow, particularly for large 

data sets with high dimensional feature vectors. Another weakness is that the K-mean 

doesn't necessarily converge to a global minimum since it is a gradient descent algorithm. 

Therefore it should be run several times with different initial cluster centers to increase 

the chances of finding the global optimal classification. The requirement that the desired 

number of classes has to be known a head of time is also in general considered a 

weakness. 

The advantages of the K-mean clustering algorithm is that it doesn't need any 

training data, but groups data that are clustered together and separates those which are far 

apart. K-mean can for this reason also be a useful data analysis tool. A lot can be learned 

about the data by running the K-mean algorithm with various numbers of desired clusters. 

3.9.4. Fuzzy-C 

The Fuzzy-C clustering algorithm (see Table 3.2) is generally considered a more 

powerful clustering algorithm than the K-mean. Like the K-mean, the Fuzzy-C requires 

the user to input the number of clusters. Assigning the feature vectors to the clusters is 

then based on a fuzzy principle. Initially each feature vector is given a random 

membership value to each of the clusters restricted by the constraint that a feature vector's 

memberships should add up to 1. A feature vector's membership value is based on the 

feature space distance between the vector to the relevant cluster center with respect to the 

distances to all the other cluster centers. Normalization of the features is therefore 

necessary. Once all the membership values are found, new cluster centers are calculated 

by weighting each feature vector according to its membership value. 



www.manaraa.com

52 

The Fuzzy-C minimizes the objective function: 

N C 

Jm(U, V) = I,I,u;~d;! (3.13) 
k=l i=l 

where m is a fuzziness parameter, U denotes all The Fuzzy-C Algorithm 
the memberships values, V denotes all the cluster 

centers, k indexes feature vectors, and i indexes 1) Input number of clusters 
clusters. The distance from vector k to cluster 2) Randomly initialize membership 
center i is denoted by d;k and the membership values. A feature vectors 
value of vector k belonging to cluster i is denoted membership should sum to 1. 

u;k· The objective function in eq. 3.13 can be 3) Assign membership values 

interpreted as the total moment about all the according to eq. 3.15 

cluster centers using all the feature vectors in 4) Calculate new cluster centers 

calculating the moment about each cluster center. according to eq. 3.14 
In this calculation the feature vectors are 

weighted by the membership values raised to the 

powerofm. 

The cluster centers that minimize the 

5) If cluster centers have changed 

or difference < tolerance 

THEN go to3) 

6) Fuzzy-C has converged. 
objective function in eq 3.13. are found by the Table 3.2 

same technique as used when finding the optimal The Fuzzy-C algorithm 

cluster center for the K-mean. The result is: 
N 

I,u~xk 
Cluster center: v.=..::.k=;;;.:.I __ 

1 n (3.14) 

I,u~ 
k=l 

where i and k as before indexes clusters and feature vectors respectively. The optimal 

cluster center is recognized as being the centroid. This makes sense when comparing with 

the result from the analyses of K-mean. The K-mean weights all vectors equally. If the 

memberships in eq. 3.14 were all equal to 1, the centroid would be reduced to the simple 

mean. 



www.manaraa.com

53 

. Optimal membership functions are found by applying Lagrange multipliers to the 

variables uik [Bezdek, 1982]. The result is: 

Fuuymembership: u1k = [ ~( :: )m~l r (3.15) 

We see that the membership value of a feature vector belonging to a cluster i is a function 

of the relative distance between the feature vector and the cluster center i with respect to 

the distances to all the other cluster centers. 

The fuzzy index m> 1 is obviously an important parameter. This parameter can be 

interpreted as a fuzziness of membership assignment and should be set proportionally to 

the uncertainty and noisiness in the acquired data. When m ~ 1 +, the Fuzzy-C becomes a 

hard clustering algorithm emulating the K-mean. This is equivalent to having a high 

confidence in the accuracy of the data. If m ~oo eq. 3.15 becomes 1/c. This means that 

a feature vector is assigned equally to all the clusters. Since this will be true for any 

vector and any clusters, all cluster centers will coexist in the simple mean of all the 

feature vectors. What this means is simply that the data is so noisy that no discrimination 

can be made. No good method of determining the fuzziness parameter m is developed. 

For good to reasonable good data, values between 1 and 3 have been found to work well 

by the author. 

The disadvantages of the Fuzzy-C is similar to those of K-mean. Fuzzy-C does 

not guarantee convergence to an optimal minima, and it needs to be given the desired 

number of clusters. The Fuzzy-C is in addition slower than K-mean because of its 

increased complexity, and it also has the problem of determining an appropriate value of 

the parameter m. Another problem occurs if any of the feature vectors becomes identical 

to any of the cluster centers. This would cause a division by zero in eq. 3.15. However, 

such an event is rare due to the high precision in a computer. 

An advantages of the Fuzzy-C is that it can be useful for classification of noisy 

data. By choosing the fuzziness parameter m the classifier is told how reliable the 

acquired data is. By assigning degrees of membership to all the clusters, noise has a 

smaller influence for patterns close to cluster boundaries. A hard assigning of such noisy 

boundary patterns could lead to arbitrarily classification due to the noise. 



www.manaraa.com

3.9.5. Nearest Neighbor 

The nearest neighbor is a 

simple intuitive supervised classifier. 

Given a set of prototypes, unknown 

feature vectors are assigned to the 

same class as the closest prototypes. 

Closeness here means any type of 

similarity measure. The similarity 

measure in Sherlock is the Euclidean 

distance. 

Two serious weaknesses of 

the nearest neighbor is illustrated in 

Fig 3.23. Because the nearest 

neighbor classifier relies on a hard 

classification, border vectors can be 

misclassified due to noise. This is a 

problem for all hard limiting 

classifiers, but is more serious for the 

nearest neighbor classifier because it 

only consider one prototype in its 

classification, disregarding the 

information in the other prototypes. 

Another serious problem with 

the nearest neighbor is its sensitivity 

to a poorly representative set of 

prototypes. Fig 3.23 b) shows how 

one prototype missing from a) 

completely changes the decision 

boundary. Feature vector 3 that in a) 

was comfortably inside the class I 

region is suddenly moved into the 

class 2 domain. All supervised 

54 

a) Effect of noise 

0 

• 

• 
• 

class2 
• 

b) Effect of missing prototype 

• 

• 
• 

class 2 

Fig 3.23 

0 

• 

0 

class 1 

0 
0 

3® 

0 

0 

class 1 

0 
0 

0 

Illustration shows hard classification of 
three border vectors. Vector 2 belongs to 
class 1, but is classified as class 2 because 
of noise. Vector 2 is wrongly classified as 
belonging to class 1 because class 2 missed 
an important prototype. The importance of 
the missing prototype is shown in b). 



www.manaraa.com

55 

classifiers are sensitive to poor prototypes, but again because the nearest neighbor only 

relies on one prototype in the classification process, it suffers more serious consequences. 

Another serious drawback with the nearest classifier is that it can be quite slow. 

This is particular true for cases with many prototypes and high dimensionality of the 

feature vectors. 

The advantages of the nearest neighbor classifier is that it is very easy to 

understand and it is also simple to implement. For well-behaved data and a representative 

set of prototypes, the nearest classifier can do a good job. 

3.9.6. The Single Layer Perceptron 

The Single Layer Perceptron network, hereafter called the Perceptron algorithm 

[Rosenblatt, 1957], is a reward punishment based supervised classifier. It is one of the 

few neural networks that guarantees convergence if the classes are linearly separable. 

The perceptron algorithm optimizes the objective function: 

(3.16) 

where wand x denote weights and feature vectors, respectively. This function is of course 

minimum i.e. zero for wrx ~0. 

The derivation of the perceptron algorithm is based on a gradient descent 

technique. If wT x < 0, the weight vector is incremented in the negative direction of the 

gradient of the objective function in eq. 3.16. 

w(k + 1) = w(k)- c{dJ(w,x)} 
aw w=w(k) 

(3.17) 

where c is a positive constant which determines the amount of correction. The first 

derivative of the perceptron objective function is: 

dJ I ( T ) - = - x · sgn(w x) - x 
dw 2 

(3.18) 



www.manaraa.com

56 

where sgn(x) is the sign function: 

{
1 if a > 0 

sgn(a) = 
-1 if a< 0 

(3.19) 

Substituting eq. 3.19 into 3.18. and eq. 3.18. into 3.17 we get the perceptron algorithm for 

updating of weights: 

{

0 if w ~ (k)x(k) > 0 
w. (k + 1) = w. (k) + c 

1 1 
x(k) if w~ (k)x(k) ~ 0 

(3.20) 

where j denotes the class. There are many ways to implement the perceptron algorithm, 

and in the above implementation one particular weight vector is associated with each 

class. 

An alternative formulation of the perceptron algorithm is called the reward­

punishment principle. A formulation for a two class problem could be: 

if x(k) e class 1 and wT (k)x(k) ~ 0 

w(k + 1) = w(k) +cx(k) 

if else x(k) e class 2 and wT (k)x(k) ~ 0 

w(k + 1) = w(k) -cx(k) 

else w(k + 1) = w(k) 

(3.21) 

In this formulation, two classes are separated with one feature vector. The punishment­

reward principle is nothing else than modifying the weight vector up if it is too small and 

down if it is to big. 

The decision boundaries of the perceptron algorithm are linear which is easily 

understood by considering the test criteria in eq. 3.20 or 3.21. If we consider eq. 3.20 

which is the most general, one can see that the weight vector is defining a linear decision 

boundary in feature space dividing the patterns into an in-class-j region and an outside­

class-j region. These decision boundaries are general because the feature vectors are 

augmented with a constant which means that for example a vector of 6 elements becomes 

a vector with 7 elements, the 7th element being a constant usually set to 1. The decision 

boundary is therefore given by 



www.manaraa.com

57 

(3.22) 

where n is the number of elements in the augmented feature vector. This is clearly a linear 

decision boundary. 

As mentioned before the perceptron algorithm converges if the classes are linearly 

separable, and for such problems the algorithm is an excellent classifier. Once the 

perceptron network is trained i.e. the weights are found, the classifier is also extremely 

fast. For linearly separable classes, the perceptron algorithm is probably one of the best 

around. 

The disadvantages of the perceptron algorithm is of course that if the classes can't 

be separated by linear decision boundaries, it won't converge and does a real poor job. No 

good stopping criteria has been found for the nonlinear case [Duda, 1973]. Another 

disadvantages is that the training i.e. finding the weight vector(s) can be pretty time 

consuming. 

3.9. 7. The Fuzzy-Perceptron 

The Fuzzy-Perceptron [Keller, 1985] is an extension of the traditional perceptron 

algorithm to classification problems where the classes are not linearly separable. A 

successful extension of the powerful perceptron algorithm would be an excellent general 

purpose classifier. 

The motivation of the fuzzy perceptron is that traditional crisp perceptron is not 

converging, even to a reasonable good solution, when the classes are linearly inseparable 

because boundary vectors are weighted just as much as vectors in the center of the class 

region. Boundary vectors are often not very characteristic for the classes they represent 

and can therefore be considered as outliers. By weighting such outliers less and 

concentrating on classifying the more important general class vectors, reasonable decision 

boundaries should be obtained. These decision boundaries would not necessarily classify 

all the boundary vectors correctly, but the majority of the more typical patterns would be 

correctly labeled. 

The weight updating procedure for a two-class problem is 

w(k + 1) = w(k) + lfl1 (k)- fl 2 (k )lm cx(k) (3.23) 



www.manaraa.com

58 

where k is iteration, c and mare constants, and J.L1(k) and ~(k) are memberships of feature 

vector x(k) for class 1 and class 2 respectively. These memberships add up to 1. The 

fuzzy perceptron modifies the weight vector with a weighted version of the current 

vector. If this vector belongs completely to any of the classes, i.e. that any of the 

membership functions are 1, the updating becomes crisp. If this pattern has a membership 

of 0.5, no adjustment is done of the weight because this pattern cannot be placed on either 

side of the decision boundary. 

The two-class membership functions for feature x(k) belonging to class j are given 

as follows: 

exp(f(d1 -di)l d)-exp(-f) 
Jl.(k) = 05 +-~---~-~-

} 2(exp(f)- exp(- f)) 
(3.24) 

(3.25) 

where J is not class j, dq is the distance from the mean of class q, d is the distance 

between the two class mean, and f is a parameter controlling how fast the function 

decreases. A plot of this membership function for different values off is shown in Fig 

3 .24. The function is 1 if the pattern is equal to the mean of its class and 0.5 if it is equal 

to the mean of the other class. 

The fuzzy perceptron is like the 

traditional perceptron algorithm also guaranteed 

to converge if the classes are linearly separable. 

It won't converge if the classes are not linearly 

separable, but in such cases it is easier to define 

a good stopping criteria. An intuitive criteria 

would be that the fuzzy perceptron should be 

stopped when all the patterns having a larger 

membership than a certain tolerance are 

correctly classified. Keller suggests the 

following threshold: 

Fig 3.24 
Membership functions for different 
values off. 



www.manaraa.com

59 

(3.26) 

(3.27) 

where E is a constant the user chooses. Equation 3.27 is found by setting membership 

functions for class 1 and class 2 equal to each other. 

The disadvantages of the fuzzy perceptron algorithm suggested by Keller is that 

the membership functions require that each class is clustered relatively densely in one 

cluster only. In addition, there are three parameters that needs to be determined: m,J, and 

E. Because of the computation of the fuzzy membership functions and the weight 

correction size, the fuzzy perceptron is also a little bit slower to train. 

Once the fuzzy perceptron is trained and three good parameter values are found, 

the fuzzy perceptron is a powerful classifier for problems with few and unimportant 

boundary vectors. 

3.9.8. Sorting Fuzzy 

The sorting fuzzy classifier is a 

classifier developed by the author and is 

based on a feature-wise fuzzification of 

the feature vectors. A vector is given a 

fuzzy score depending on how similar it 

is to one of the prototypes i.e. fuzzy 

rules. Scores are given feature for feature 

and then combined. 

Fuzzy memberships for a fuzzy 

rule based on a prototype is illustrated in 

Fig 3.25. In this example there is a total 

of three features, and the rule is based on 

the prototype [a,b,c]. The membership 

functions in this illustration are piece­

wise linear, but could be any monotonic 

function. Each side of the prototype 

IF f1::a AND f2=b AND f3=c THEN class 1 

eature I 1 : 
-x6oxx .. 

a 

eature 2~L_-"*lo,L __ __.,'*"€18----e-~:tt-~ .... 
- " x~ o~ 

b 

earure

3

1xxx 00 X~ • 
c 

Fig 3.25 
Illustration of feature-wise fuzzification in 
Sorting Fuzzy classifier 



www.manaraa.com

60 

feature is fuzzified independently, monotonically decreasing to zero when hitting a 

prototype feature belonging to another class. In order to enable this, the prototypes have 

to be sorted feature-wise. If the prototypes are rather limited and important prototypes 

might be missing, the fuzzification could alternatively decrease to zero when hitting any 

other prototype feature regardless of class. If one would want to reduce a large number of 

fuzzy rules that contained a lot of redundancy, one could use trapezoidal instead of 

triangular membership functions. These membership functions would be constant at 1 

between neighboring prototype features. 

In the case of the prototype feature being the extreme left or right feature (see 

feature 3 in Fig 3.25) it is difficult to define a good membership function. In the Fig 3.25. 

the extreme-side fuzzy function is simply a mirror image of the other side of the 

prototype. A constant membership function at 1 would be another useful alternative. 

When an unknown pattern is tested against one of the fuzzy rules it gets a fuzzy 

score for each feature. These scores then need to be combined in order to create a vector 

score. The author has suggested four ways of doing this: 

(3.28) 
; 

Ss = I,s;2 (3.29) 
; 

S1 = I,f(s;) (3.30) 
; 

Sm = n S; (3.31) 

where si fuzzy score of feature i. Of these four methods, the latter is the most strict. Any 

feature with a small score would have a large impact on the total result. The addition 

method in eq. 3.28 is not as sensitive to such cases. This method has more of an average 

information and can in fact be interpreted as a scaled average value. The summed square 

method in eq. 3.29. is somewhere in between the two mentioned before. The method in 

eq. 3.30 is a generalization of the two eq. 3.28. and 3.29. 

Once the vector score for one fuzzy rule is found, scores for the other fuzzy rules 

have to be calculated. An easy way to classify the unknown feature vector is to give it the 

same class as the prototype the fuzzy rule with the highest score was based on. 



www.manaraa.com

61 

The major disadvantages of the sorting fuzzy classifier is that it is relatively slow. 

Unknown vectors have to be tested against all fuzzy rules, and that can take time if the 

number of rules are large. In most cases, however, it is possible to reduce the number of 

rules without significantly reducing the performance. 

The good properties of the sorting fuzzy classifier are that it solves detection 

problems with separated clusters within each class, that it trains extremely fast, and is 

easy to understand. The Sorting fuzzy classifier is a good all-round classifier when speed 

is not too much of a concern. 



www.manaraa.com

62 

4. INSPECTION STRATEGIES 

Once the system is trained it runs by itself without human supervision. How well 

the system performs is of course highly dependent on how well the training was done. 

The four decisions that has to be made in the training processes are listed below: 

1) Choose feature support and grid size 

2) Choose feature set 

3) Choose training data 

4) Choose classifier 

Of these 2) and 3) are very important and 1) and 4) are less crucial. 

4.1. Choosing Feature Support and Grid Size 

The choice of these parameters will influence the classification result, but within 

reasonable limits, the values of these parameters are of less importance. 

The feature support must be small enough to give local information, but should 

also be large enough to provide enough data to justify using for example statistics if the 

chosen features are statistical. If one attempts to discriminate between textures, the 

feature support must be large enough that a representative texture patch will fit inside. In 

general, the author has found a window size of 1 Ox 10 to be a good all-round size. 

The grid size is a parameter whose sole purpose is to adjust the resolution in the 

output image. If this parameter is chosen as 4 the output image will have a resolution of 

4x4 pixels. The lower this number is, the more computation is needed. For most 

problems, a resolution of 1 x 1 pixel is not required so the inspection speed can be 

increased by allowing a lower resolution. By adjusting the grid size parameter the user 

can optimize the resolution/computation ratio for the particular problem at hand. 

An example of the effects of changing the feature support and grid size is shown 

in figure 4.1. As seen from this figure, increasing the feature support has an averaging 

effect while reducing the grid size increases the resolution, revealing more detailed 

information. 



www.manaraa.com

63 

4.2. Choosing Features 

This decision is one of the most important in the training process. Although a 

good classifier theoretically could discriminate between classes that are poorly separated 

in feature space, the general rule is that garbage in gives garbage out. For a successful 

classification, it is important that the input information is as good as possible. 

Fortunately, there are good ways of determining the discriminatory capacity of a feature. 

For this purpose Sherlock is equipped with the command View Feature Map. This 

command was used to generate the images used in Fig 4.1. 

A feature map does provide a lot of information about a feature's ability to 

distinguish between flaws and non-flaws. However, feature maps give only information 

about individual features and don't tell how two or more features cooperatively would 

perform. 

In the following sub-sections, examples of images and their respective feature 

maps are discussed. The idea of evaluating the usefulness of a feature by looking at it's 

feature map could easi ly be understood from one example alone, but several examples are 

provided to give the reader a better feel for what information the different features are 

extracting. 

Feature support 

Fig 4.1 
Illustration of the effects of f eature support and grid size. The images shown 
are feature maps of the standard deviation of an image of two Brodatz textures. 

G 
r 

4 d 

2 

s 

z 
e 



www.manaraa.com

4.2.1. A Simulated Texture Image 

The first example is an image 

with four simulated texture regions 

(Fig. 4.2). The human eye can easily 

see two circles in the middle, but 

partly hidden by the largest circle is 

also a rectangle on the left. The fourth 

texture is of course the background. 

Feature maps of three different 

feature sets are shown in Fig 4.3-5. By 

considering these feature maps one 

can see that the hardest region to 

identify is the rectangle. Several 

features can distinguish between the 

background and the combined circle 

area, and other features can separate 

64 

Fig 4.2 
Simulated texture image. 

the small circle from the rest. But, only one feature, the standard deviation, is capable of 

correctly identifying the rectangle. In fact, this feature is also able to identify the 

background. Clearly, the standard deviation should be chosen as one of the features to 

classify textures of these type. In addition, it would need a feature capable of separating 

the two circles. For this task there are many features to choose among. 

Of the three feature sets, the first order histogram features performed best while 

the cosine transform features did a really poor job. The poor performance of the cosine 

transform features is of course easy to understand since they contain a lot more edge and 

geometry information than statistical. 

The conclusion of the feature map analyses is that two features are necessary in 

the classification of the textures in Fig 4.2. One of these features must be the standard 

deviation and the other feature could be any feature that correctly separates the two circles 

(mean, first order energy, autocorrelation, second order energy, and the (0,0) Cosine 

Transform feature). 



www.manaraa.com

65 

Mean Skewness 

Kurtosis Energy Entropy 
Fig 4.3 
First order histogram f eatures. 



www.manaraa.com

66 

Inertia 

Absolute Difference Inverse Difference Energy 
Fig 4.4 
Second order Histogramfeatures. 



www.manaraa.com

67 

(1,0) (1,1) (1,2) 
Fig 4.5 
Cosine Transformfeatures. (coordinates corresponds to the transfonn matrix) 



www.manaraa.com

4.2.2. Two Natural Brodatz Textures 

The problem discussed in this 

section is texture segmentation. Fig 

4 .6 shows an image that consists of 

two Brodatz textures. The objective 

in here is of course to separate the 

two textures. 

Feature maps of this image 

are found in Fig 4.7-9. 

Since there are only two 

classes in this image we are ideally 

looking for a feature that alone can 

separate the two. It turns out that 

several features can do this including 

standard deviation, entropy, inertia, 

and absolute difference. Of these the 

entropy does the best job. 

68 

Fig 4.6 
Two natural textures 

As in the last example, the cosine transform does a rather poor job. The 

explanation for this is of course the same as earlier. There is little or no geometrical 

information that the cosine transform features can extract that separates the two textures. 

By the naked eye one can see that the two textures differ in orientation. However, this is 

not significant enough that the cosine transform can pick it up. 

It is interesting to note that the first order histogram features (standard deviation 

and entropy) do a better job than the second order histogram features (inertia and 

absolute difference) . For texture classification, spatial location is considered very 

important which would lead us to expect the second order histogram features to be the 

best. However, using the feature map, one can clearly see what information is extracted 

by each feature. 

The features of choice, if two features were chosen, would be standard deviation 

and entropy. 



www.manaraa.com

69 

Mean Skewness 

Kurtosis Energy Entropy 
Fig 4.7 
First order histogram features. 



www.manaraa.com

70 

Autocorrelation Covariance Inertia 

Absolute Difference Inverse Difference Energy 

Fig 4.8 
Second order histogram f eatures. 



www.manaraa.com

71 

(1,0) (1,1) (1,2) 

Fig 4.9 
Cosine transform features. 



www.manaraa.com

4.2.3. Two Geometry Brodatz Textures 

The two textures in Fig 4. I 0 

are both of textiles. The human eye 

can easily discriminate between these 

two textures, but it turns out that his 

task is harder for a computer. 

Considering the first order 

histogram features (Fig. 4.11 ), none 

of the features is particularly useful. 

The mean, standard deviation, and 

energy all contributes a little bit, but 

the two textures are far from 

separated. 

Second order histogram 

features (Fig. 4.12.) do a better job. 

In particular, inertia and absolute 

72 

Fig 4.10 
Two geometry Brodatz textures. 

difference separate the two textures reasonably well. The other second order histogram 

features does a poor job, inverse energy being the poorest. 

The information extracted by the cosine transform features is very interesting. 

None of these features actually separates the textures completely, but by further 

processing of (1,1) and (1,2) the two texture regions should be discriminated. 

The conclusion of this feature map analysis is that none of the features could 

alone adequately classify the two textures. The best attempt was made by the cosine 

transform features . By further processing of some of these features, a very good 

classification should be possible. 

Interesting to note, is that they eye and the computer are extracting very different 

information when evaluating an image. The simulated texture image (Fig 4.2) was hard to 

classify using the naked eye, but was easy to classify for the computer. The geometry 

textures are easy to distinguish between using the human eye, but a lot harder to classify 

by a computer. 



www.manaraa.com

73 

Kurtosis Energy Entropy 
Fig 4.11 
First order histogram f eatures. 



www.manaraa.com

74 

Inertia 

Absolute Difference Inverse Difference Energy 

Fig 4.12 
Second order histogram features. 



www.manaraa.com

75 

(1,0) (1,1) (1,2) 
Fig 4.13 
Cosine transform features. 



www.manaraa.com

4.2.4. Void Flaw in Busy Image 

This is an x-ray image that 

contains an inclusion-like flaw in the 

lower part of the image while 

containing a horizontal trend, vertical 

bars, and handwriting. 

The objective in this image 

could either be to remove the 

handwriting, extract the flaw, remove 

the trend, or identify the vertical bars. 

Feature maps of this image 

are displayed in Fig 4.15-17. 

The first order histogram 

features are capable of extracting a 

wide variety of information in this 

image. The flaw is reasonably well 

76 

Fig 4.14 
Voidflaw in busy image 

identified by the standard deviation, and all the edges in the image are found by the 

skewness, kurtosis, and entropy. This information could be useful in identifying the 

handwriting or the vertical bars. 

The second order histogram features did a beautiful job in identifying the flaw. 

The covariance and inertia completely separated the flaw from the rest of the image. In 

these feature maps, the trend and the handwriting are completely gone. The vertical bars 

are almost gone, too; a couple of weak edges are barely visible in the background. 

The three lower cosine transform features did an excellent job in removing the 

trend and the vertical bars. The reason for this is that these feature maps contain no 

horizontal frequencies. By using the three lowest features, the flaw and the handwriting 

should both be possible to identify. 



www.manaraa.com

77 

Mean Standard deviation Skewness 

Kurtosis Energy Entropy 
Fig 4.15 
First order histogram features. 



www.manaraa.com

78 

Autocorrelation Covariance Inertia 

Absolute Difference Inverse Difference Energy 
Fig 4.16 
Second order histogram features. 



www.manaraa.com

79 

(1,0) (1,1) (2,0) 

Fig 4.17 
Cosine transformfeatures. 



www.manaraa.com

4.2.5. Infra Red Galaxy Image 

This is an astronomical image 

of an extragalactic field. It is an 

infrared image at 100 micron wave­

length, and the four bright spots in 

the middle are known galaxies. The 

objective in this image is to find 

unknown galaxies that are hidden by 

the cloud-like structures called infra-

red cirrus clouds. Most of the 

infrared cirrus errunision is from our 

own galaxy. 

By analyzing the feature maps 

(Fig 4 .19-21) we can see that the first 

80 

Fig 4.18 
Infra red galaxy image. 

order histogram features that are most useful for this purpose is standard deviation and 

entropy. The standard deviation clearly separated the four known galaxies, and the 

entropy identifies four areas in the bottom part of the image as structures having similar 

characteristics as two of the known galaxies. This is a very interesting result! Could it be 

that the entropy has identified four unknown galaxies? 

The interesting suggestion by the entropy is backed by the result of the inverse 

difference. This feature identifies the same six structures as having the same 

characteristics. The other second order histogram features cannot substantiate this claim 

although most of them identify most of the known galaxies. 

The cosine transform features, although identifying the known galaxies, are not 

identifying other structures in the image that has characteristics that are similar to the 

known galaxies. 



www.manaraa.com

81 

Mean Standard Deviation Skewness 

Kurtosis Energy Entropy 

Fig 4.19 
Feature maps of infra red galaxy image, first order histogram features. 



www.manaraa.com

82 

Autocorrelation Covariance Inertia 

Absolute Difference Inverse Difference Energy 
Fig 4.20 
Feature mnps of infra red galaxy image, second order histogram features. 



www.manaraa.com

83 

(1,0) (1,1) (2,0) 

Fig 4.21 
Feature maps of infra red galaxy image, cosine transform features. 



www.manaraa.com

84 

4.2.6. Fossil Skeletal Details in X-ray Image 

The image in Fig 4.22 is an 

x-ray image of a fish fossil and the 

objective with this image is to 

extract skeletal details. 

The feature maps of this 

image is shown in Fig 4.23-25. 

A couple of the first order 

histogram features did an excellent 

job in finding vertebras (standard 

deviation and entropy). However, 

none of the rib bones could be found 

using these features. 

The second order histogram 

Fig4.22 
Fossilized fish skeleton in x-ray image. 

features turned out to be the least useful features in this image. However, it is interesting 

to note that these features identified noise probably introduced in the image acquisition. In 

the three difference features (inertia, absolute difference, and inverse difference) one can 

find strong vertical structures. These are caused by inference between vertical structures in 

the original image and the distance parameter in the second order histogram extraction. 

The cosine transform features were extracting a lot of interesting details. In most 

of these feature maps, the vertebras very clearly identified. Several did also show weak 

contours of rib bones. 

Considering how difficult a task it is to extract information in the image in Fig 

4.22, the three feature sets did a fairly good job. None of them were able to convincingly 

identify rib bones, but the spine and vertebras were easily found. 



www.manaraa.com

85 

Mean Standard deviation 

Kurtosis Energy Entropy 

Fig 4.23 
First order histogram features. 



www.manaraa.com

86 

Autocorrelation Covariance Inertia 

Absolute Difference Inverse Difference Energy 

Fig 4.24 
Second order histogramfeatllres. 



www.manaraa.com

87 

(1,1) 
Fig 4.25 
Cosine transf orm features. 



www.manaraa.com

88 

4.3. Choosing Training Data 

This topic has been addressed earlier as well, but it is so important that it is worth 

repeating. Since Sherlock is a set of general techniques that are trained to solve particular 

problems, it is extremely important that the training data is representative for the actual 

data to be classified. The knowledge incorporated in the trained system comes exclusively 

from the training data. If the training data is incomplete, the trained system will become 

incomplete also. 

Ideally, all types of flaws and non-flaws should be represented, but this is difficult 

to guarantee. This is partly due to the fact that computers are extracting different 

information than a human. Even though, prototypes of all visual flaw variations have 

been included, the actual numerical flaw variations calculated by the computer can be 

incomplete. To design a good set of training data, it is therefore important to consult 

feature maps. 

Another good rule is the more data the better. However, this approach can slow 

the training process unnecessarily if there is a lot of redundancy present. Nevertheless, 

such an approach can prove useful to cover as many flaw variations as possible. 

4.4. Choosing Classifier 

The general rule for choosing a classifier is that is must match the feature set. First 

of all, the classifier has to be able to extract the discriminatory information in the features. 

Secondly the features cannot conflict with any of the assumptions the classifier is based 

on. These two requirements are closely related. 

An example of a classifier that has a pretty strict requirement is the Single Layer 

Perceptron. This classifier requires that the classes are linearly separable in feature space. 

For data that don't comply with this, the classifier performs poorly. Other classifiers with 



www.manaraa.com

89 

strict requirements are the K-mean and Fuzzy-C classifier. These both require the data to 

be unimodal i.e. each class has no more than one cluster. 

Classification speed is of course also an important issue. The classifier should be 

as fast as possible without sacrificing reliability. This is of course a tough requirement 



www.manaraa.com

90 

5. CLASSIFICATION RESULTS 

5.1. Introduction 

The first part of this chapter reports on unsupervised classification. This is not 

directly related to automatic flaw detection, but it tells a lot about the extracted features. 

Many examples of feature extraction were given in last chapter, and the unsupervised 

classification can be looked at as a measure of how well the features are able to extract 

valid information. The reason why these results are included here is that feature 

extraction is such an important part in finding flaws. 

The last part of this chapter reports on supervised classification. This is what an 

automatic flaw detection system would rely upon. Here the extracted features are carried 

through the whole flaw detection process. Training data (prototypes) are extracted from 

known data, and the know ledge acquired by the system is then used to classify unknown 

data. Real data are used in this section to demonstrate Sherlock's ability to solve real 

world problems. 

5.2. Simulated Texture Image 

The first example of unsupervised classification is the simulated texture image 

(Fig 4.2) studied in the chapter of inspection strategies. The objective is to make the 

classifier label the four texture regions correctly. Classification results using different 

methods of feature normalization are used to demonstrate the importance of this subject. 

As seen from Fig. 5.1, all four texture regions are correctly identified using an appropriate 

normalization. 



www.manaraa.com

91 

5.3. Shrinkage Cracks 

The second example of unsupervised classification is using the same strategy as in 

last example to find shrinkage cracks in railroad frogs. Classification results using various 

normalization methods are also discussed here. The classifier of choice this time is the 

Fuzzy C clustering algorithm. This performs similarly to the K -mean, but has more 

flexibility due to the fuzzy parameter m which was constant at 2 for the results shown in 

Fig 5.2-3. Because of the low contrast in the images, the histogram equalized version of 

the original images are displayed to better evaluate the classification result. 

5.4. Classification of Flawed Rugs 

The results reported here are examples of automatic supervised classification that 

could have been implemented in a real-time system for monitoring production of rugs. 

The objective of the inspection is to identify regions with flaws. The rugs consists 

of .25" fibers that all are pointing in the same angle out of the rug basement. Sometimes 

these fibers get skewed making the wrong angle, and sometimes the fibers themselves 

have problems. Both of these cases are defined as flawed rug regions which the 

manufacturer would like to automatically identify. 

The images for the inspection to be reported were acquired using a light source, a 

camera, and a frame grabber. Flaw regions in this setting appeared as darker regions in 

the image. 

A total of four images were inspected (Fig 5.4-5.7) of which one (Fig 5.4) was 

used as the training image. In this image, three prototypes were extracted from flaw 

regions and three prototypes were extracted from non-flaw regions. The white rectangle 

that appears in the original (top) picture in Fig 5.4-5.7 was a piece of tape that was used 

as aid in the image acquisition. 



www.manaraa.com

92 

The extracted features were normalized using a mean-sdev scheme to compensate 

for differences in mean and variance between the images. The features extracted was the 

first order histogram features, and the classifier was the single layer perceptron network. 



www.manaraa.com

93 

Normalized with Sdev. Normalized with Max dev. 

Fig 5.1 
Classification of simulated textures using all six first order histogram 
features, feature support=IO, grid size=4, and K-mean, 



www.manaraa.com

94 

No Normal. Normal., Sdev. Normal., Max Dev. 

Fig 5.2. 
Identification of shrinkage cracks using first order histogram features, 
feature support=IO, grid size=2, and Fuzzy-C (m=2). All processing 
was done on the original image. The histogram equalized result is shown 
to clarify the darkjlaw structure. 



www.manaraa.com

95 

Normal., Max Dev. 

Fig 5.3 
Identification of shrinkage cracks using first order histogram features, 
feature support=/0, grid size=2, and Fuzzy-C (m=2), 



www.manaraa.com

96 

Fig 5.4 
Identification of flawed rug regions using first order histogram features, feature 
support= 10, grid size=4, and the single layer perceptron network. A total of six 
prototypes from this image were used in the classification process. 



www.manaraa.com

97 

Fig 5.5 
Identification of flawed rug regions using first order histogram features, feature 
support=/0, grid size=4, and the single Layer perceptron network. A total of six 
prototypes from the image in Fig 5.4 were used in the classification. 



www.manaraa.com

98 

Fig 5.6 
Identification of flawed rug regions using first order histogram features, feature 
support= I 0, grid size=4, and the single layer percept ron network. A total of six 
prototypes from the image in Fig 5.4 were used in the classification. 



www.manaraa.com

99 

Fig 5.7 
Identification of flawed rug regions using first order histogram features, feature 
support= I 0, grid size=4, and the single Layer perceptron network. A total of six 
prototypes from the image in Fig 5.4 were used in the classification. 



www.manaraa.com

100 

Fig 5.8 
Identification of void flaw in busy image using inertia and absolute difference, feature 
support= 10, grid size=2, and the sorting fuzzy classifier. A total of fifteen prototypes 
from the training image were used in the classification. 



www.manaraa.com

101 

Fig 5.9 
Identification of void flaw in busy image using inertia and absolute difference, feature 
support= I 0, grid size=2, and the sorting fuzzy classifier. A total of fifteen prototypes 
from the training image in Fig 5.8 were used in the classification. The above 
classification is result of a low-contrast test image with vertical bars, but no flaws. 



www.manaraa.com

102 

Fig 5.10 

Identification of void flaw in busy image using inertia and absolute difference, feature 
support= 10, grid size=2, and the sorting fuzzy classifier. A total of fifteen prototypes 
from the training image in Fig 5.8 were used in the classification. The above 
classification is result of a low-contrast test image with hand writing, but no flaws . 



www.manaraa.com

103 

Fig 5.11 
Identification of void flaw in busy image using inertia and absolute difference, feature 
support= /0, grid size=2, and the sorting fuzzy classifier. A total of fifteen prototypes 
from the training image in Fig 5.8 were used in the classification. The above 
classification is result of a high-contrast test image with hand writing, but no flaws. The 
results show that intensity alone can not be used to identify flaws. 



www.manaraa.com

104 

Fig 5.12 
Identification of void flaw in busy image using inertia and absolute difference, feature 
support= 10, grid size=2, and the sorting fuzzy classifier. A total of fifteen prototypes 
from. the training image in Fig 5.8 were used in the classification. The above 
classification is result of a high-contrast test image with hand writing, but no flaws. The 
results show that the intensity alone can not be used to identify flaws. 



www.manaraa.com

105 

Fig 5.13 
Identification of void flaw in busy image using inertia and absolute difference, feature 
support= 10, grid size=2, and the sorting fuzzy classifier. A total of fifteen prototypes 
from the training image in Fig 5.8 were used in the classification. The above 
classification is result of a test image containing a flaw in upper half of the image. This 
flaw was found. 



www.manaraa.com

106 

Fig 5.14 
Identification of void flaw in busy image using inertia and absolute difference, feature 
support=lO, grid size=2, and the sorting fuzzy classifier. A total of fifteen prototypes 
from the training image in Fig 5.8 were used in the classification. The above 
classification is result of a test image containing a flaw in bottom half of the image. This 
flaw '1-vas partially found. 



www.manaraa.com

Ill 

Fig 5.15 
Identification of void flaw in busy image using inertia and absolute difference, feature 
support=IO, grid size=2, and the sorting fuzzy classifier. A total of fifteen prototypes 
from the training image in Fig 5.8 were used in the classification. The above 
classification is result of a high-contrast test image containing no flaws. Flaws were 
incorrectly identified. 



www.manaraa.com

112 

5.6. Discussion 

The good results reported earlier in this chapter are very encouraging. These 

results suggest that it is feasible to make a general purpose flaw detection package that 

can be trained to solve a wide variety of detection problems. 

The results of particular interest are the results from 5.4 and 5.5. In these sections, 

one image was used as training data, and based on a few prototypes from this image, the 

computer was set to inspect completely unknown images. Two things have to be 

considered in evaluating the classification of these two image series. Firstly, the training 

data in both cases was very limited. In an industrial setting one would perhaps use all 

vectors in twenty images to provide prototypes that cover more of the expected feature 

space. Secondly, the problems were very different. The rug problem was finding a low­

contrast flaw, and the void-flaw was a high-contrast flaw that had to be found in a busy 

image. When the results were still very good it suggests that a modular pattern 

recognition scheme is a feasible way to make a general purpose flaw detection package. 



www.manaraa.com

113 

6. USER MANUAL FOR SHERLOCK V1.1 

6.1. Processing Principles 

Input lma~e 

t 
Preprocessin~ 

(nciK cluning. ~ 
etc.) 

' Feature Extraction 
(~UtiotiCO. mc:mcnto. ~ llo.ftlarlt;o 

etc.) 

I 
f ' U nsupervisetl Classification Supervised Classification 

(cl~tQjne) (~prior luming) 

I I 

' Output lma~e 
(~ lnt.o fl.v an:l ncn-lla-rDJiclre) 

Sequence of processing for identifying flaws using Sherlock: 

1) Preprocessing (optional) 
Any type of processing of the image that will ease the task of identifying flaw regions. 

2) Feature Extraction 
a) Choose feature support (Parameters+ Feature Support) 
b) Choose grid size (Parameters+Feature Support) 
c) Choose type of feature set (Features+ ... ) 

3) Classification 
i) Unsupervised Classification 

a) Choose appropriate unsupervised classifier (K-mean or Fuzzy-C) 
ii) Supervised Classification 

a) Train 
b) Extract features to classify 
c) Classify 



www.manaraa.com

File 
Qpen .. . 
Save .. . 
~lose 
Write 
Read 
~rint 
Print Preyiew 
Print Setup ... 
E~it 

File~ Write/Read 
feature vector 
Iraining data 
Neural net weights 
Qutput nodes 
.Cluster centers 
Output Image 
Feature Map 

Edit 
Copy Image 
Copy features 
Copy Classification result 

View 
Ioolbar 
Status Bar 
feature Chart 
Classification Chart 
Feature Map 
Histogram 
Toggle Qrid 
Zoom 

114 

6.2. Menus 

Description 
Open PGM file from disk 
Save active image as PGM file 
Close active image 
Write data to disk 
Read data to disk 
Print active image 
Show print preview of active image 
Change printer setup 
Terminate program 

Description 
Write/read extracted image descriptors 
Write/read classified feature vectors 
Not implemented 
Not implemented 
Not implemented 
Write/read segmented image in own ASCII format 
Write/read image based upon a specified feature in own ASCII 

Description 
Copy active image to clipboard 
Not implemented 
Not implemented 

Description 
Toggle Toolbar 
Toggle Status Bar 
Not implemented 
Not implemented 
Creates a new image based upon a specified feature 
Creates a histogram based upon the active image 
Toggle grid in active image 
Magnify or shrink active image 



www.manaraa.com

View+Zoom 
In 
Qut 
Normal 
~hange Zoom factor 

lmgProc 
Noise Cleaning 
Trend Removal 
Qeometry Removal 
Histogram Equalization 
gdge detection 
!lnsharp masking 
,Smoothing 
Thresholding ... 
To !mg struct 

Features 
Eirst order Histogram 
,Second order Histogram 
Autocorrelation 
~osin Transform 
Walsh Transform 
Hadamard Transform 
Zernike Moments 
.Karhunen Loeve 
Wavelet 
Qeometry 
gxtract Characteristics 
Normalize 
Feature Sel~ction 

Features+Extr. Char. 
Feature Mean 
Feature Sdev 
Feature Max 
Feature Min 

115 

Description 
Magnifies active image using current zoom factor 
Shrinks active image using current zoom factor 
Restore active image to original size 
Change zoom factor (default is 2) 

Description 
Not implemented 
Not implemented 
Not implemented 
Generate a histogram equalized version of active image 
Not implemented 
Not implemented 
Not implemented 
Create a binary image at specified threshold value 
Convert output image or feature map to an ordinary image 

Description 
Generate first order histogram based on active image 
Generate second order histogram based on active image 
Generate autocorrelation features from active image 
Generate features based on the Cosine Transform 
Generate features based on the Walsh Transform 
Generate features based on the Hadamard Transform 
Not implemented 
Not implemented 
Not implemented 
Not implemented 
Extract feature-wise characteristics 
Normalize features 
Not implemented 

Description 
Calculate mean for each feature 
Calculate standard deviation for each feature 
Find max for each feature 
Find min for each feature 



www.manaraa.com

Featureso+Selection 
Scale Q to 1 
Scale mean/sdev 

Classifiers 
K-m~an .. . 
Fuzzy-,C .. . 
Min-Max Clustering 
Nearest Neighbor 
_eerceptron 
S.orting Fuzzy 
LMSE 
S.tochastic 
Biased classifier 
Histogram classifier 
Min-Max Neural Net 
Fuzzx Backprop 
Mendel Classifier 
Back Prop Neural Net 

Parameters 
feature Support ... 
Qrid Size .. . 
Qrid Color .. . 
IrainingFlag 

Window 
.Quplicate 
.Arrange Icons 
,Cascade 
Tile Horizontal 
Tile .Yertical 

Special 
Merge ... 
Show Merge Line 

116 

Description 
Scale all features linearly to values between 0 and 1 
Scale features by subtracting mean and divide by sdev 

Description 
Traditional clustering algorithm 
Fuzzified version of K-mean 
Not implemented 
Simple supervised classifier 
Single layer neural network 
Supervised fuzzy classifier 
Not implemented 
Not implemented 
Not implemented 
Not implemented 
Not implemented 
Not implemented 
Not implemented 
Not implemented 

Description 
Define square over which the features are extracted 
Define square which each feature vector represents 
Define grid color 
Toggle TrainingFlag 

Description 
Duplicate active image 
Arrange icons at the bottom of the screen 
Cascade images 
Tile images horizontal 
Tile images vertical 

Description 
Not implemented 
Show the border in the included combine images 



www.manaraa.com

a b c d e 

Button Command 

a File Open 
b File Save 
c Copy Image 
d Print 
e Print Preview 
f Toggle Grid 
a ., Create Feature map 
h Create Histogram 

Display Statistics 
j Toggle Training Flag 
k Zoom In 

Zoom Out 
m No Zoom 
n About 

117 

6.3. The Toolbar 

f g h 1 J 

Description 

Open PGM file on disk 
Save active image as PGM fi le 
Copy active image to clipboard 
Print active image 
Show print preview of active image 
Toggles grid 

k l m 

Creates a new image based upon a specified feature 
Creates a histogram based upon the active image 
Not implemented. Has currently same function as d 
Toggle training of active image 
Magnifies active image using current zoom factor 
Shrinks active image using current zoom factor 
Restore active image to origi nal size 
Displays information about copyright and tech. sup. 

n 



www.manaraa.com

11 8 

6.4. Dialog Boxes 

Nu111ber ol clurtera 

lolaa Iteration K-mean 
Initialization 

®~liut 

Nonaaliu tion 

0 ~upervised 
0 H.ando111 

Number of clusters: 

Max Iteration: 

Initialization: 

K fi rst: 

Supervised: 

Random: 

Normalization: 

Max difference: 

Standard. dev: 

None: 

® Nax.@fetence 

0 S!andald deY. 

0 !tone 

Specifies the number of desired segment types in the 
output image. Two is commonly used to distinguish 
between flaws and non-flaws. 

This specifies the maximum number of iteration before 
the iteration is terminated. A dialogbox will inform the 
user if the iteration is terminated without convergence. 

Determine how the algorithm ini tially chooses initial 
cluster centers. 

Choose the K first feature vectors 

Use specified feature vectors identified using the 
training data routine 

Choose k random feature vectors. 

Attempts to give all features equal weight in the 
classification process. 

Divide the difference between each feature in the cluster 
center and a feature vector with the maximum deviation 
from the mean for that particular feature. 

Divide the difference between each feature in the cluster 
center and a feature vector with the standard deviation 
of that particular feature. 

No normalization. 



www.manaraa.com

11 9 

Number ol chnler~ 

Fu:uinen lndea Cancel 

Error Tolerance - Fuzzy-C 
Max Iteration& -r Nonoalization 

® M.aalfl 0 ideY 0 H.ono 

Number of clusters: 

Fuzziness Index: 

Error Tolerance: 

Max Iteration: 

Normalization: 

Potceplron Conatant 

14u lloralion 

.,;ght lnilializ.OO.. ------. 

® s..t to .II. 
0 Settol 

O R_._ 

Perceptron Constant: 

Max Iteration: 

Weight Initialization: 

Specifies the number of desi red segment types in the 
output image. Two is commonly used to distinguish 
between flaws and non-flaws. 

Must be larger than I. The larger the value the more 
fuzziness is assigned to the feature vectors. 

Terminate iteration if error is smaller than this value 

Terminate iteration if number of iterations exceeds this 
value 

See K-mean 

Perceptron 

Posi tive constant. The larger this constant is, the longer 
search jumps are made in each iteration. 

Terminate iteration if number of iterations exceeds this 
number. Should be at least a seven digit number. 

Determines how to initialize the weights. 



www.manaraa.com

120 

6.5. Example of Basic Processing 

LOADING AN IMAGE 
comb l .b is loaded by choosing 
File~Open or button #I 

EXTRACTING FEATURES 
Features are extracted by choosing 
one of the three first options in the 
the features menu. 

For our example we choose 
"First Order Histogram" 

NOTE: Extracting features can take 
some time, especially for large 
images. 

UNSUPERVISED CLASSIFICATION 
The feature vectors are classified 
by choosing one of the classifiers 
in the menu seen to left. 
The classification result is then 
used to generate a segmented image. 

For our example we choose K-mean 



www.manaraa.com

121 

Number of clusters -

Max Iteration - Cancel 

Initialization --::----, 

@ K,first 

0 ,[upervi~ed 
0 fl.andom 

Normalization-----, 

@ Max _gifference 

0 Slandard dev. 

0 !!one 

Choosing K-mean pops up a dialog box. 
Since lhe image we have opened has two 
different textures only, we accept 2 clusters. 
The other parameters are also accepted as 
they are. Hit the OK button. 

After a short time, an output image should 
be displayed. The edge between the two 
textures are quite jagged. This is due to the 
grid size parameter. To get a smoother edge 
the grid parameter has to be set smaller which 
gives a higher resolution. The cost of this is 
more computation. 

SAVING FEATURE VECTORS 
Next operation in our example is to store the 
current feature vectors which will be overridden 
next time a new set of features are extracted. 
Saved feature vectors can be retrieved 
from disk later. 

To save feature vectors choose 
"File-+ Write-+ Feature vector" 



www.manaraa.com

122 

CHANGING GRID PARAMETER 
To increase the resolution in the 
output image, one can increase the 
grid size parameter in the parameter 
menu. 

To get a smoother edge in our 
example we change the grid size from 
the default 4 to 2. We then extract 
features again, because the old 
features are not valid since the grid size 
is changed. 

NOTE: Click comb I .b with the mouse 
before extracting new features. This is 
necessary to te ll the program from which 
image it is supposed to extract features 

After extracting new features 
(still first order histogram) and 
classified these by K-mean, we should 
get another output image as shown 
to left. This image clearly has a 
smoother edge. It is pro bably a good idea to 
store new feature vectors for later use. 

To compare wi th the actual edge, one 
can choose "Speciai-+Show Merge Line". 
(The result of this operation is not shown.) 

DISPLAYING FEATURE MAPS 
Feature maps are useful to determine how 
well the features have separated two classes 
in feature space. Each feature map is c reated 
from the values of one individual feature. This 
image then tells how well this particular feature 
distinguishes between different regions in 
the image. 

Displaying features can be done either by 
choosing "View-+ FeatureMap" or by 
cl icking the 7th button in the toolbar. 
Desired feature can then be selected in a 
dialog box. 

To the left is shown the three fi rst features of 
a total of six for the image comb l .b using a 
2x2 grid and a feature support of I Ox I 0. 



www.manaraa.com

® ~elected "'"" onlp 

123 

GENERATING TRAINING DATA 
Next step is to generate training data so we can try supervised 
classifiers which in general are more powerful. 
To extract training data we have to 

I) Extract feat ures 
2) Set training flag 
3) Identify classes 
4) Save to file 

For our example: 
I) Load old features which we previously stored 
2) Set training flag for active image by clicking comb l .b 

and choosing Parameters-+TrainingFlag 
3) Use the mouse to identify two separate classes as 

done in illustration to left. Classes are separated by 
color. Colors are chosen by # of left-button mouse 
clicks. Right mouse button clears the color assignment. 
Which color you assign to each class doesn't matter. 
All that matters is that the classes have different 
colors. 

4) Save training data by 
a) File-+ Write-+ Training Data and specifying file name 
b) Choosing "Selected area only" in the next dialog box. 
The option "Whole Image" would have created a third 
class, namely the background, and stored all the 
feature vectors as training data. 

THE NEAREST NEIGHBOR CLASSIFIER 
Next we want to classify the image using the NN classifier. 

I) Load prototypes 
Choose Classifiers-+ Nearest Neighbor-+ Read Prototypes 
In the file dialog box , type in the name of the training 
data file. 

2) Load/extract feature vectors that you want to 
classify. For our example we already have features 
loaded. 

3) Classify feature vector and generate an output image. 
Choose Classify-+ Nearest Neighbor-+Classify 

To left is shown output using max dev as normalization. 
Perfect border is displayed by Speciai-+Show Merge Line 

THE PERCEPTRON CLASSIFIER 
I) Load training data 

Choose File-+Read-+Training Data 
2) Train the Pcrceptron algorithm 

Choose Classifiers-+ Perceptron-+ Train 
3) Load/Extract data to classify. 

Choose File-+ Read-+FeatureVector or 
extract new features. 
Type of features must correspond with the type of 
features used in the training data 

4) Classify 
Choose Class ifiers-+ Perceptron-+Classi fy 



www.manaraa.com

I24 

6.6. System Requirements 

Computer: IBM compatible 

Processor: 486DX33 or better 

RAM: 4 MByte or more 

Viedeo Card: 256 colors or more 

Software: MS Windows 3.1 or higher 

6.7. Technical Support 

Contact: 

Jorn Lyseggen 
Iowa State University 

3IO Durham 
Ames, lA 500 II 

Phone office: (5I5) 294-4955 
Phone home: (5I5) 232-3530 

E-Mail: lys@iastate.edu 



www.manaraa.com

125 

7. CONCLUSION AND FUTURE WORK 

In this thesis, a new prototype system for automatic image-based general purpose 

flaw detection has been presented. The system is based on a modular pattern recognition 

scheme, a strategy that to the authors knowlede has not been tried before in automatic 

flaw detection. 

Another important aspect of this system is that once it has been trained it can run 

completely unsupervised. 

Versatility in this system is achieved by incorporating a wide variety of feature 

sets and a battery of different classifiers. Using these general techniques, the system can 

be tailored to solve detection problems in any image modality. 

The system has been demonstrated for very different types of images and 

detection problems. Encouraging results have been reported in: 

• texture discrimination in optical images 

• identification of galaxes in infra red images 

• detection of shrinkage cracks in x-ray images 

• identification of flawed rug areas in optical images 

• detection of weld flaws in x-ray images. 

Of these, the two latter was done in a series of images. One of the series were low­

contrast flaws in noisy optical images, and the second serie was a high-contrast flaw in 

busy x-ray images. The results of this classification were very good which demonstrates 

the feasibility of developing a reliable automatic inspection system by the proposed 

pattern recognition scheme. 

The reported prototype system has been licensed by the Center for Advanced 

Technology Development and shipped to a dozen of the sponsors at the NDE center. Very 

positive feedback has been received. 



www.manaraa.com

126 

Improvements that can be made in future work are: 

• development of more and better feature extractors 

• development of a macro language that will automate execution of 

succesive commands 

• development of a module that automatically generates inspection 

reports 

• implementation of time consuming algorithms on a DSP board to 

enable real-time inspection 

• development of a confidence measure that tells how confident any 

classification is 

All of these will be undertaken by the author of this thesis after graduation. 



www.manaraa.com

127 

BIBLIOGRAPHY 

Aloimonos J. and Schulman D. (1989), Integration of Visual Modules, Academic Press Inc., Boston 

Basart J., Zhang Z., and Lyseggen J., (1993) Automatic Flaw Detection, Review of Progress in Quantitative 
Nondestructive Evaluation, Vol. 13A, D.O. Thompson and D.E. Chimenti, Plenum Press, New York 

Bezdek, J. C. (1982), Pattern Recognition with Fuzzy Objective Function Algorithms, Plenum Press, New 
York 

Brodatz, P. (1956), A photographic albumforartisits and designers, Dover, New York 

Branco S.(l992), Fast Learning and Invariant Object Recognition, John Wiley & Sons, New York 

Brown, R. G. and Hwang, Y. C. (1985), Introduction to Random Signals and Applied Kalman Filtering, 
John Wiley & Sons, New York 

Brown, R. A. (1992), Image processing workstation software development and feature size measurement 
methods for NDE X-ray images, M. S. Thesis, Iowa State University 

Chen, C. H. (1973), Statistical Pattern Recognition, Hayden Book Company, Rochelle Park, New Jersey 

Dayhoff, Judith E. (1990), Neural Network Architectures, Van Nostrand Reinhold, New York 

Dasarathy B. V. (1990), Nearest Neighbor (NN) Norms: NN Pattern Classification Techniques, IEEE 
Computer Society Press, Washington 

Doering E. R. (1987), Detection of anomalies in digital images using pixel classification 
M.S. Thesis, Iowa State University 

Duda, R. and Hart, P. (1973), Pattern Classification and Scene Analyses, New York: Wiley 

Fukunaga, K. (1972), Introduction to statistical pattern recognition, Academic Press, New York 

Gatot, C. (1988), Feature Extraction in medical radiographic images, M.S. Thesis, Iowa State University 

Gonzales, R. W. and Woods, R. E (1991), Digital/mage Processing, Addison Wesley Publishing 
Company, New York 

Grasse IIi, A. ( 1969), Automatic Interpretation and classification of images, Academic Press, New York 

Gray, J. N. and Inane, F. (1990), A CAD Simulation Tool for X-ray NDE Studies, Review of Progress in 
Quantitative Nondestructive Evaluation, Vol. 9A, D.O. Thompson and D.E. Chimenti, New York: 
Plenum Press, pp 391-398 

Halmshaw, R. (1987), Nondestructive Testing, London, England: Edward Arnold 

Haralick R. M. and Shapiro L. G. (1990), Computer and Robot Vision, Addison Wesley Publishing 
Company, New York 



www.manaraa.com

128 

Hopfield, J. J. (1982), Neural networks and physical systems with emergent collective computational 
abilities, Proc. Natl. Acad. Sci. 79: pp 2554-58 

Julesz, B. (1962), Visual Pattern Discrimination, IRE Trans. Information Theory, IT-8, I, February 1962, 
pp 84-92 

Julesz, B. (1973), lnablitiy of Humans to Discriminate Between Visual Textures That Agree in Second 
Order Statistics - Revisited, Perceptrion, 2, 1973, pp 391-405 

Kandel, A. (1982), Fuzzy Techniques in Pattern Recognition, John Wiley & Sons, New York 

Kasturi, Rand Jain R. C. (1991), Computer Vision: Principles, IEEE Computer Society Press, Whasington 

Keller, J. A. and Hunt, D. J. (1985}, Incorporating Fuzzy Membership Functions into the Perceptron 
Algorithm, IEEE Trans. Pattern Anal. Machine In tell., vol. P AMI-7, no. 6, pp. 693-699 

Kosko, B. (1992), Neural Networks and Fuzzy Systems, Prentice Hall, Englewood Cliffs, NJ 

Li, Z. C. (1989), Computer Transformation of Digital/mages and Patterns, World Scientific, London 

Lippmann, Richard P. (1987), An introduction to computing with neural nets, IEEE ASSP Magazine, pp 4-
22 (April) 

Lyseggen, J. and Basart, J. (1994), A MS Windows Package for Automatic Image Based Flaw Detection, 
Proceeding of 3rd Annual Midwest Electro-Technical Conference, April 8-9, pp 39-42 

Lyseggen, J. and Basart, J.P. (1994}, Automatic Flaw Detection Using 2nd order Statistics and Fuzzy 
Logic., Review of Progress in Quantitative Nondestructive Evaluation, Vol. 14, D.O. Thompson and 
D.E. Chimenti, Plenum Press, New York. To be published. 

Moharir, P. S. (1992), Pattern-Recognition Transforms, John Wiley & Sons Inc., New York 

Meisel, W. (1972), Computer-Oriented Approaches to Pattern Recognition, Academic Press, New York 

Nadler M, and Smith E.P. Pattern Recognition Engineering, John Wiley & Sons Inc., New York, 1992 

Van Otterloo, P. J. (1990), A coutour-Oriented Approach to Shape Analyses, Prentice Hall, New York 

Oppenheim, A.V. and Schafer R. W. (1989), Discrete Time Signal Processing, Prentice Hall, New York 

Patrick, E. A. and Fattu, J. M. (1986), Artificial Intelligence with Statistical Pattern Recognition, Prentice­
Hall, Englewood Cliffs, New Jersey 

Pratt, W. K. (1991}, Digital/mage Processing, John Wiley & Sons Inc, New York 

Rosenblatt, F. (1957), The perceptron: A perceiving and recognizing automation, Cornell Univ., Ithaca, 
NY, Project PARA, Cornell Aeronaut. Lab. Report. 85-460 



www.manaraa.com

129 

Rummelhart, D. E. and McClelland, J. L. (eds.) (1986), Parallel Distributed Processing, vall, M.I.T. 
Press, Cambridge, MA 

Sankar K. P. (1986), Fuzzy Mathematical Approach to Pattern Recognition 
John Wiley & Sons, New York 

Siwek, E. M. (1994), Application of the X-ray measurement model to image processing of X-ray 
radiographs. M.S. Thesis, Iowa State University 

Specht, Donald F. (1990), Probabilistic Neural Networks, Neural Networks 3:109-118 

Tou, J.T. and Gonzalez R. C. (1974), Pattern Recognition Principles, Addison-Wesley Publishing 
Company, Massachusetts 

Ulmer, K. W. (1992), Automated Flaw Detection Scheme for X-ray Image in Nondestructive Evaluation, 
M.S. Thesis, Iowa State University 

White, H. (1989), Learning in Artificial Neural Networks: A Statistical Perspective, Neural Computation, 
vol. 1, no. 4, 425-469, Winter 1989 

Wilson, R. and Spann M. (1988), Image Segmentation and Uncertainty, John Wiley & Sons Inc., New 
York 

Wang, Z. and Klir G. J. (1992), Fuzzy Measure Theory, Plenum Press, New York 

Wong, C.Y. (1987), Regression filtering and edge detection, M.S. Thesis, Iowa State University 

Zadeh, L. A. (1965), Fuzzy sets, Inform. Contr. vol 8, pp. 338-353 

Zheng, Y. (1987), Image analyses, modeling, enhancement, restoration, feature extraction and their 
application to NDE and astronomy, Ph.D. Thesis, Iowa State University 


	1994
	An MS Windows prototype for automatic general purpose image-based flaw detection
	Jorn Lyseggen
	Recommended Citation


	An MS Windows prototype for automatic general purpose image-based flaw detection

